
The Java Language Specification
 Lexical Structure
 Types and Values
 Conversions
 Names and Variables
 Program Structure
 Class and Interface Type Declarations
 Arrays
 Blocks and Statements
 Expressions

The Java Language Specification
 Lexical Structure
 Lexical Structure
 Unicode Escapes
 Input Lines
 Tokens
 Comments
 Keywords
 Identifiers
 Literals
 Separators
 Operators
 Types and Values
 Conversions
 Names and Variables
 Program Structure
 Class and Interface Type Declarations
 Arrays
 Blocks and Statements
 Expressions

The Java Language Specification
 Lexical Structure
 Types and Values
 Types and Values
 Primitive Types And Values
 Reference Types and Values
 Standard Default Values
 Conversions
 Names and Variables
 Program Structure
 Class and Interface Type Declarations
 Arrays
 Blocks and Statements
 Expressions

The Java Language Specification
 Lexical Structure
 Types and Values
 Conversions
 Conversions on Primitive Values
 Conversions on Reference Values
 Assignment Conversion
 Casting Conversion
 Unary Arithmetic Promotion
 Binary Arithmetic Promotion
 Names and Variables
 Program Structure
 Class and Interface Type Declarations
 Arrays
 Blocks and Statements
 Expressions

The Java Language Specification
 Lexical Structure
 Types and Values
 Conversions
 Names and Variables
 Names
 Variables: Values and Reference
 Storage Classes
 Name Spaces
 Name Resolution
 External Access
 Rules about Names
 Program Structure
 Class and Interface Type Declarations
 Arrays
 Blocks and Statements
 Expressions

The Java Language Specification
 Lexical Structure
 Types and Values
 Conversions
 Names and Variables
 Program Structure
 Packages and Directories
 Globally Uniques Package Names
 Locating Packages on a Host System
 Compilation Units
 Compilation Unit Name Space
 Standard Imports
 The Import Statement
 Class and Interface Type Declarations
 Arrays
 Blocks and Statements
 Expressions

The Java Language Specification
 Lexical Structure
 Types and Values
 Conversions
 Names and Variables
 Program Structure
 Class and Interface Type Declarations
 Class and Interface Type Declarations
 Class Declarations
 Field Declarations
 Variable Declarations
 Method Declarations
 Constructor Method Declarations
 Automatic Storage Management and Finalization
 Class Loading and Initialization
 Interface Declarations
 A class and interface example
 Arrays
 Blocks and Statements
 Expressions

The Java Language Specification
 Lexical Structure
 Types and Values
 Conversions
 Names and Variables
 Program Structure
 Class and Interface Type Declarations
 Arrays
 Arrays
 Array Types
 Declarations of Array-valued Variables
 Array Initialization
 Array Length
 Array Indexing
 Array Allocation and Recalmation
 Arrays versus Strings
 Blocks and Statements
 Expressions

The Java Language Specification
 Lexical Structure
 Types and Values
 Conversions
 Names and Variables
 Program Structure
 Class and Interface Type Declarations
 Arrays
 Blocks and Statements
 Blocks and Statements
 Blocks
 Local Variable Declarations
 Statements
 Empty Statement
 Labeled Statements
 Expression Statements
 Selection Statements
 Iteration Statements
 Jump Statements
 Guarding Statements
 Unreachable Statements
 Expressions

The Java Language Specification
 Lexical Structure
 Types and Values
 Conversions
 Names and Variables
 Program Structure
 Class and Interface Type Declarations
 Arrays
 Blocks and Statements
 Expressions
 Value of an Expression
 Type of an Expression
 Evaluation Order
 Primary Expressions
 Array Access
 Field Access
 Method Calls
 Allocation Expressions
 Postfix Expressions
 Unary Operators
 Multiplicative Operators
 Additive Operators
 Shift Operators
 Relational Operators
 Equality Operators
 Bitwise and Logical Operators
 Conditional-And Operator &&
 Conditional-Or Operator II
 Conditional Operator ? :
 Assignment Operator
 Expression
 Constant Expression
 Unassigned Variables

Lexical Structure
Java programs are written using the Unicode character encoding. (For information about Unicode,
see The Unicode Standard: Worldwide Character Encoding, Version 1.0, Volume 1 ISBN 0-201-
56788-1 and Volume 2 ISBN 0-201-6O845-6, and the additional information about Unicode 1.1 at
ftp://unicode.org.)

This chapter describes the translation of a raw Unicode character stream into a stream of Java
tokens, using the following three translations, which are applied in turn:

1. A translation of the raw stream of Unicode characters, allowing any Unicode character to be input
as an ASCII escape sequence, resulting in an escaped Unicode stream.

2. A translation of the escaped Unicode stream into a stream of input characters and line terminators.

3. A translation of the stream of Unicode characters and line teminators into a sequence of Java
tokens.

In each of these translations the longest possible translation is chosen at each step, even if the result
does not ultimately make a legal Java program, while another translation would. Thus the characters
a--b are tokenized as a, --, b, which cannot become part of a grammatically correct Java program,
even though the tokenization a, -, -, b could be part of a grammatically correct Java program.

On systems that do not support full Unicode, translations between Unicode and the native character
encoding must be provided. For example, Unicode is effectively a superset of ASCII, and Java
translation step 1, described just above, provides a simple way to encode any Unicode character,
anywhere in the source code of a progam, as an escape sequence of ASCII characters. Source code
may thus be stored as ASCII files rather than as full Unicode source files. If each ASCIl character in
the source code file is simply mapped to the corresponding Unicode character as it fed to the Java
compiler, translation step 1 will then reconstruct Unicode characters represented as escape
sequences.

Unicode Escapes
All Java implementations first perform a transformation on the raw Unicode character input,
translating the characters \u followed by four hexadecimal digits to the Unicode character whose
code point is the indicated hexadecimal value. This transformation results in a sequence of escaped
input characters.

EscapedlnputCharacter:
 UnicodeEscape
 RawinputCharacter

UnicodeEscape:
 \ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
 u
 UnicodeMarker u

RawInputCharacter:
 any Unicode character

HexDigit: one of
 0 1 2 3 4 5 6 7 8 9 O a b c d e f A B C D E F

Note that \, u, and all the hexadecimal digits are ASCII characters.

A Unicode escape sequence may contain more than one occurrence of the letter u before the
hexadecimal digits. (Programmers writing Java programmers are unlikely to need this feature; it is
included to allow a simple automatic translation of Java source code from full Unicode to an ASCII
file representation that is itself a correct Java program if naively mapped back to Unicode but from
which the original Unicode file can be reconstructed exactly.)

If a \ is not followed by u, then it is treated as a RawinputCharacter and remains as part of the
escaped Unicode stream. If a \ is followed by u, or more than one u, but the last u is not followed by
four hexadecimal digits, then it is a compile-time error.

The character produced by a Unicode escape is not subject to rescanning. For example, the raw
input \uOO5cuOO5b results in the four characters \ u 5 b, not the single character Z (which is
Unicode character 005b); while 005c is indeed the Unicode value for \, the resulting \ is not
interpreted as the start of a further Unicode escape sequence.

Java systems should use the \uxxxx notation as an output format to display Unicode characters
when full Unicode is not available or a suitable font is not available.

Input Lines
The second translation step divides the sequence of escaped input characters into lines by
recognizing lines as being terminated by the ASCII characters CR LF or CR or LF. (The idea is that
either a carriage return CR or a line feed LF by itself can serve as a line terminator, but CR
immediately followed by LF is counted as one line teminator, not two.) The result is a sequence of
line terminators and input characters, which are the terminal symbols for the tokenization process in
the third step.

LineTerminator:
 the ASCII CR character followed by the ASCII LF character
 the ASCII CR character
 the ASCII LF character

InputCharacter:
 EscapedlnputCharacter, but not CR and not LF

This definition of what is a line determines any line numbers produced by a Java compiler or other
Java system component. It also specifies the termination of the // form of comment (§ Comments).

Tokens
The input characters resulting from escape processing and input line recognition are further
processed by recognizing tokens and discarding comments and whitespace, thereby reducing the
input to a sequence of tokens. This process is described by the following grammar:

Input:
 InputElementsopt

InputElements:
 InputElement
 InputElements InputElement

 InputElement:
 Comment
 WhiteSpace
 Token

WhiteSpace:
 the ASCII SP character
 the ASCII HT character
 the ASCII FF character
 LineTerminator

Token:
 Keyword
 ldentifer
 Literal
 Separator
 Operator

As usual, this translation works from left to right and, as usual, the longest possible match is chosen
at each step.

Whitespace is defined as the ASCII space, horizontal tab, and form feed characters as well as line
separators, previously recognized as CR, LF, or CR LF. As a special concession for compatibility with
certain operating systems, the ASCII SUB character (\ula) is also treated as whitespace if it is the last
character in the escaped input stream.

Comments and white space serve to separate adjacent tokens that, if adjacent, might be tokenized in
another manner. For example, the characters - and = in the input can form the operator token -= only
if there is no intervening white space or comment.

Comments
A comment in a Java program begins with an occurence of the characters /*, / ** , or //.

Comment:
 / * NotStar TraditionalCommentTail
 / * * DocCommentTail
 / / CharactersInLineopt LineTerminator

TraditionalCommentTail:
 * /
 NotStar TraditionalCommentTail
 * NotSlash TraditionalCommentTail

DocCommentTail:
 /
 * DocCommentTail
 NotStarNotSlash TraditionalCommentTail

NotStar:
 InputCharacter, but not *
 LineTerminator

NotSlash:
 InputCharacter but not /
 LineTerminator

NotStarNotSlash:
 InputCharacter, but not * or /
 LineTerminator

CharacterslnLine:
 InputCharacter
 CharacterslnLine InputCharacter

These three styles of comments are:

* text * All the text from / * to * / is ignored.

/ * * text * / The enclosed text is used in automatically generated documentation of the
following declaration.

/ / text All the text from / / to the end of the line is ignored.

The grammar implies the following:

· Comments do not nest.
· Comments do not occur within string and character literals.
· / * and * / have no special meaning in // comments.
· // has no special meaning in comments that begin with / * or / * *

As a result, the text

/* this comment / * / / /* * ends here: * /

is a single complete comment.

Keywords
The following character sequences, formed from ASCII letters, constitute special tokens that are
reserved for use as keywords.

Keyword: one of

abstract int
boolean interface
break long
byte native
case new
cast null
catch operator
char outer
class package
const private
continue protected
default public
do rest
double return
else short
extends static

The keywords byvalue, cast, const, future, generic, goto, inner, operator, outer, rest, and var are
reserved but not used in Java 1.0.

Note that true and false look like keywords but technically are Boolean literals (§ Boolean Literals).

Identifiers
An identifier is an unlimited length sequence of Unicode letters and digits, the first of which must be a
letter. An identifier must not have the same spelling (code point sequence) as a keyword.

Identifier:
 UnicodeLetter
 Identifjer UnicodeLetter
 Identifier UnicodeDigit

A Unicode character is a digit if its Unicode name contains the word 'DIGIT", as listed on pages 391-
393 of The Unicode Standard, Version 1.0, Volume 1 (see §1.1 for the ISBN); this is precisely the
characters in the following ranges:

\u0030- \u0039
0-9

ISO-LATIN-1digits

\u0660- \u0669 Arabic-Indic digits
\uO6fO- \u06f9 Eastern Arabic-

Indic digits
\u0966- \u096f Devanagari digits
\u09e6- \u09ef Bengali digits
\u0a66- \u0a6f Gurmukhi digits
\u0ae6- \u0aef Gujarati digits
\uOb66- \u0b6f Oriya digits
\uObe7- \u0bef Tamil digits

\u0c66- \u0c6f Telugu digits
\u0ce6- \u0cef Kannada digits
\u0d66-\u0d6f Malayalam digits
\uOe5O- \u0e59 Thai digits
\u0ed0- \u0ed9 Lao digits
\u1040-\u1049 Tibetan digits

A Unicode character is a letter if it falls in one of the following ranges and is not a digit:

\u0024
$

 dollar sign (for
historical reasons)

\u0041- \uOO5a
A-Z

Latin capital letters

\uOO5f
_

underscore (for
historical reasons)

\u0061- \uOO7a
a-z

Latin small letters

\uOOcO- \uOOd6 various Latin letters
with diacritics

\uOOd8-\uOOf6 various Latin letters
with diacritics

\uOOf8-\uOOff various Latin letters
with diacritics

\uOlOO-\ulfff other non-CJK

alphabets and
syrnbols

\u3040-\u318f Hiragana,
Katakana,
Bopomofo, and
Hangul

\u3300-\u337f CJK squared
words

\u3400- \u3d2d Korean Hangul
Symbols

\u4eOO-\u9fff Han (Chinese,
Japanese, Korean)

\uf9OO- \ufaff Han compatibility
Two identifiers are the same only if they are identical, that is, have the same Unicode code point for
each letter or digit. This means, in particular, that the identifiers consisting of the single letters Latin
capital A (\u0041), Latin small a (\uOO6l), Greek capital A (\u0391), and Cyrillic small a (\u0430) are
all distinct.

This means that composite characters are distinct from the decomposed characters. For example, a
LATIN CAPITAL LETTR A GRAVE \uOOcO could be considered to be the same as a LATIN CAPITAL
LETTER A \u0041 followed by a NON-SPACING-GRAVE \u0300 when sorting, but these are distinct
in Java. See The Unicode Standard, Volume 1, pages 626-627, about sorting, and pages 412ff about
decomposition.

Literals
 Literal
A literal is the source representation of a value of a primitive or String type:

Literal:
 Integer Literal
 Floating-Point Literal
 Boolean Literal
 Character Literal
 String Literal

See Conversions for a description of primitive types.

Literals
 Literal
 Integer Literal
 Floating-Point Literal
 Boolean Literal
 Character Literal
 String Literal
A literal is the source representation of a value of a primitive or String type:

Literal:
 Integer Literal
 Floating-Point Literal
 Boolean Literal
 Character Literal
 String Literal

See Conversions for a description of primitive types.

Integer Literals
Integer literals may be expressed in decimal (base 10), hexadecimal (base 16), or octal (base 8)
notation, using characters from the ASCII character set portion of Unicode:

IntegerLiteral:
 DecimalLiteral IntegerTypeSuffixopt
 HexLiteral IntegerTypeSuffixopt
 OctalLiteral IntegerTypeSuffixopt

An integer literal is of type long if it is suffixed with an L or l ; otherwise it is of type int.

IntegerTypeSuffix: one of
 l L

A decimal literal consists of a digit from 1 to 9, optionally followed by one or more digits from 0 to 9,
and represents a positive integer:

DecimalLiteral:
 NonZeroDigit Digitsopt

Digits:
 Digit:
 Digits Digit

Digit:
 0
 NonZeroDigit

NonZeroDigit: one of
 1 2 3 4 5 6 7 8 9

A hexadecimal literal consists of a leading Ox or OX followed by one or more hexadecimal digits and
can represent a positive, zero, or negative number. Hexadecimal digits with values 10 through 15 are
represented by the letters a through f or A through F, respectively; each letter used as a hexadecimal
digit may be uppercase or lowercase.

HexLiteral:
 Ox HexDigit
 OX HexDigit
 HexLiteral HexDigit

HexDigit: one of
 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

An octal literal consists of a digit 0 optionally followed by zero or more of the digits 0 through 7 and
can represent a positive, zero, or negative number.

OctalLiteral:
 0
 OctalLiteral OctalDigit

OctalDigit: one of
 0 1 2 3 4 5 6 7

The largest decimal literal of type int is 2147483647 (2^3l-l). The largest positive hexadecimal and

octal literals of type int are Ox7fffffff and 017777777777 respectively, both representing 2147483647
(2^3l-l). The most negative hexadecimal and octal literals of type int are 0x80000000 and
020000000000 respectively, each of which represents the decimal value -2147483648 (-2^3l). The
hexadecimal and octal literals Oxffffffff and 037777777777 each represent the decimal value -1.

It is a compile-time error for a decimal literal of type int to be larger than 2^31-l, or for a hexadecimal
or octal int literal to provide more than 32 bits. This means, in particular, that the largest negative int
cannot be represented as a decimal literal, because "-2147483648" appearing in Java source code
would be tokenized as the unary operator
- followed by a putative decimal literal 2147483648, but 2147483648 is not a valid decimal integer
literal. Use the hexadecimal literal 0x80000000 instead.

Examples of int literals are:
0 2 0666 OxDadaCafe

The largest decimal literal of type long is 9223372036854775807L (2^63-1). The largest positive
octal and hexadecimal literals of type long are O777777777777777777777L and Ox7fffffffffffffffL
respectively; each represents 9223372036854775807L (2^63-1). The most negative hexadecimal
and octal literals of type long are OxffffffffffffffffL and 01777777777777777777777, each of which
represents the decimal value -9223372036854775808 (-2^63). The most negative hexadecimal and
octal literals of type long are Ox8OOOOOOOOOOOOOOOL and 0400000000000000000000L
respectively, each of which represents the decimal value -9223372036854775808 (-2^63). The
hexadecimal and octal literals OxffffffffffffffffL and 01777777777777777777777L each represent the
decimal value - 1L.

It is a compile time error for a decimal literal of type int to be larger than 2^63-l or for a hexadecimal
or octal long literal to provide more than 64 bits. This means, in particular, that the largest negative
long cannot be represented as a decimal literal, because "-9223372036854775808L" appearing in
Java source code would be tokenized as the unary operator - followed by a putative decimal literal
9223372036854775808L, but 9223372036854775808L is not a valid decimal long integer literal. Use
the hexadecimal literal 0x8000000000000000 instead.

Examples of long literals are:

0l 0777L OxlOOOOOOOOL 2147483648L

Floating-Point Literals
A floating-point literal has the following parts: a whole-number part, a decimal point, a fractional part,
an exponent, and a type suffix. The exponent, if present, is indicated by a letter e or E followed by an
optionally signed integer.

It is required to have at least one digit, in either the whole number or the fraction part, and either a
decimal point or an exponent. All other parts are optional.

A floating-point literal is of type float if it is suffixed with a letter F or f; otherwise its type is double,
and can optionally be suffixed with D or d.

FloatingPointLiteral:
 Digits . Digitsopt ExponentPartopt FloatTypeSuffixopt
 . Digits ExponentPartopt FloatTypeSuffixopt
 Digits ExponentPart FloatTypeSuffixopt

ExponentPart:
 ExponentIndicator SignedIntegeropt

ExponentIndicator: one of
 e E

SignedInteger:
 Signopt Digits

Sign: one of
 + -

FloatTypeSuffix: one of
 f F d D

It is a compile-time error for a non-zero floating-point literal to be too large, so that on rounded
conversion to its internal representation it becomes an IEEE infinity, or nonzero but too small, so that
on rounded conversion to its internal representation it becomes a zero.

The largest floating-point literal of type float is 3. 40282347e+38f. The smallest floating-point literal of
type float is 1. 40239846e-45f.

The largest floating-point literal of type double is 1.79769313486231570e+308. The smallest floating-
point literal of type double is 4. 94065645841246544e-324.

Predefined constants representing the positive and negative infinities and Not-a-Number (NaN)
values of both float and double types are defined in the standard classes Float and Double..

Examples of float literals:
1e1f 2.f .3f 3.14f 6. 02e+23f

Examples of double literals:
1e1 2 .3 3.14 1e-9d

Boolean Literals
The boolean type has two literal values: true and false.

BooleanLiteral: one of
 true false

Character Literals
A literal of type char is expressed as a character or an escape sequence enclosed in single quotes.
The escape sequences allow for the representation of some non-graphic characters as well as the
single quote and the backslash in character and string literals.

CharacterLiteral:
 ' SingleCharacter '
 ' Escape '

SingleCharacter:
 InputCharacter, but not ' or \

Escape:
 \ b // \u0008: backspace BS
 \ t // \u0009: horizontaltab HT
 \ n /* \uOOOa: linefeed LF
 \ f // \uOOOc: formfeed FF /*
 \ r /* \uOOOd: carriage return CR /*
 \ " // \u0022: double quote "
 \ ' // \u0027: singlequote '
 \ \ // \uOO5c: backslash \
 OctalEscape // \uOOOO to \u00ff: from octal value

OctalEscape:
 \ OctalDigit
 \ OctalDigit OctalDigit
 \ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
 0 1 2 3 4 5 6 7

ZeroToThree: one of
 0 1 2 3

Note that the characters CR and LF are never an InputCharacter: they are recognized as constituting
a LineTerminator.

It is a compile-time error for the character following the SingleCharacter or Escape to be other than a
'; it is a compile-time error for a line terminator to appear after the first ' and before the closing '. Note
that, because Unicode escapes are processed very early, it is not correct to write '\uOOOa' for a
character literal whose value is linefeed LF; the Unicode escape \uOOOa is transformed into an
actual linefeed in translation step 1(§1.1), and the linefeed becomes a LineTerminator in step 2(§1.2),
and so the character literal is not valid in step 3. Instead, one should write '\n'. Similarly, it is not
correct to write '\uOOOd' for a character literal whose value is carriage return CR. Instead, one
should write '\r'.

It is a compile-time error if the character following a backslash in an escape is not b, t, n, f, r, ", ', \, 0,
1, 2, 3, 4, 5, 6, or 7. (Recall that the Unicode escape \u is processed very early; see §1.1.

Examples of char literals:
 'a' '\t' '\\' '\u15e'

String Literals
A string literal is zero or more characters enclosed in double quotes, and may use the escape
sequences defined above:

StringLiteral:
 " StringCharacters "

StringCharacters:
 StringCharacter
 StringCharacters StringCharacter

StringCharacter:
 InputCharacter, but not " or \
 Escape

It is a compile-time error for a line separator to appear after the first " and before the closing ". In
most situations a long string constant can be broken up into shorter pieces and written as an
expression using the string concatenation operator + (§ String Concatenation Operator +).

Each string literal is a reference to an instance of class String; such literals cannot be modified.

Examples of string literals:

 " " // the empty string
 "\ "" // string containing " alone
 "This is a string"
 "This is a " + // actually a string-valued expression
 "two-line string" // containing two literals

Separators
The following characters are used in Java code as separators:

Separator: one of
 () { } [] ; , .

Operators
The following characters and character combinationas are defined as operators.

Operator: one of
 = > < ! ~ ? :
 == <= >= != && II ++ --
 + - * / & I ^ % << >>
>>>
 += -= *= /= &= I= ^= %= <<= >>= >>>=

Types and Values
There are four kinds of data types in Java: class types, interface types, array types, and primitive
types. Every variable has an associated data type, sometimes called its "compile-time type" because
its type can always be determined by the compiler, before the program is executed. There are two
kinds of data values that can be stored in variables, passed as arguments, returned as values, and
operated upon: References and primitive values. The value stored in a variable must be compatible
with the compile-time type of the variable.

Type:
 PrimitiveType
 ClassType
 IntanceType
 ArrayType

References are "pointers" to dynamically allocated objects. There are two kinds of dynamically
allocated objects: class instances and arrays. Every object that is not an array is an instance of some
particular class; this class is sometimes called the "runtime type" of the object. Every array also has
a run-time type. If the value of a variable is a reference to an object, then the run-time type of the
object must be compatible with the compile-time type of the variable.

There may be many references to the same object or to the same array. Objects may contain state
information in field variables belonging to the object. If two variables contain references to the same
object, it is possible to modify the state information through one reference to the object and then
observe the altered state through another reference.

Primitive values are indivisible and do not share state with other primitive values. A variable whose
(compile-time) type is a primitive type always holds a value of that exact primitive type. Such a value
is not shared in any way with any other variable, so the value of the variable can be changed only by
operations using that variable.

Primitive Types and Values
 Primitive Types and Values
The primitive types available in every Java program are:

· the arithmetic types:
· the integral types:
 * byte, whose values are 8-bit signed two's-complement integers
 * short, whose values are 16-bit signed two's-complement integers
 * int, whose values are 32-bit signed two's-complement integers
 * long, whose values are 64-bit signed two's-complement integers

· the floating point types
 * float, whose values are 32-bit IEEE 754 floating-point numbers
 * double, whose values are 64-bit IEEE 754 floating-point numbers

· the character type char, whose values are 16-bit Unicode characters
· the boolean type, whose values are true and false
A primitive type is named by its reserved keyword:

PrimitiveType: one of
 boolean char byte short int long float double

Primitive Types and Values
 Primitive Types and Values
 Integral Types and Values
 Floating-Point Types and Values
 Character Types and Values
 Boolean Types and Values
The primitive types available in every Java program are:

· the arithmetic types:
· the integral types:
 * byte, whose values are 8-bit signed two's-complement integers
 * short, whose values are 16-bit signed two's-complement integers
 * int, whose values are 32-bit signed two's-complement integers
 * long, whose values are 64-bit signed two's-complement integers

· the floating point types
 * float, whose values are 32-bit IEEE 754 floating-point numbers
 * double, whose values are 64-bit IEEE 754 floating-point numbers

· the character type char, whose values are 16-bit Unicode characters
· the boolean type, whose values are true and false
A primitive type is named by its reserved keyword:

PrimitiveType: one of
 boolean char byte short int long float double

Integral Types and Values
The primitive integral types are byte, short, int, and long, which are respectively 8-bit, 16-bit, 32-bit,
and 64- bit signed two's-complement integers, and char, which is a 16-bit unsigned integer
representing a Unicode code point.

The values of type byte are integers ranging from -256 to 255, inclusive.

The values of type short are integers ranging from -32768 to 32767, inclusive.

The values of type int are integers ranging from -2147483648 to 2147483647, inclusive.

The values of type long are integers ranging from -9223372036854775808 to
9223372036854775807, inclusive.

Any value of any integral type may be cast to any other arithmetic type.

Any value of any integral type may be cast to type char, and any character may be cast to any
integer type.

There are no casts between integer types and the type boolean.

Java provides a number of operators that act on integer values:

· the basic equality operators = and !=
· the relational operators <, <=, >, and >=
· the unary operators + and -
· the additive and multiplicative operators +, -, *, /, and %
· the prefix and postfix increment/decrement operators ++ and --
· the signed and unsigned shift operators <<,>>, and >>>
· the unary bitwise logical negation operator ~
· the binary bitwise logical operators &, I, and ^
If both operands are of integral type, the operation is considered an integer operation. If at least one
of the operands is of type long, then the operation is carried out using 64-bit precision (any other
operand that is not long is first widened, as if by a cast, to type long) and the result, if not boolean, is
of type long. Otherwise, the operation is carried out using 32-bit precision (any other operand that is
not int is first widened, as if by a cast, to type int) and the result, if not boolean, is of type int.

Note that while the built-in operators listed above always widen their operands so as to operate at
32-bit or 64-bit precision, values of integral type are not automatically widened when used as
arguments in method calls. Individual defined methods may be coded so as to perform such
widening, but the calling process itself does not do automatic widening.

The built-in integer operators produce only the low 32 bits or 64 bits of their two's-complement
arithmetic result and do not indicate an overflow or underflow in any way.

Java throws an ArithmeticException if the right-hand operand to an integer divide operator / or
integer remainder operator % is zero; this is the only case where an exception is generated by an
operator on integral types.

Floating-Point Types and Values
The floating-point types are float and double, representing single-precision 32-bit and double-
precision 64-bit format IEEE 754 values and operations as specified in IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985 (IEEE, New York).

The floating-point value of type float, arranged from smallest to largest, are: negative infinity,
negative finite values, negative zero, positive zero, positive finite values and positive infinity. There is
also a special value Not-a-Number (NaN), which is used to represent the result of certain operations
such as dividing zero by zero; most operations with NaN as an operand produce NaN as a result.

The finite nonzero values of type float are of the form s·m·2e, where s is +1 or -1, m is a positive
integer less than 2^24, and e is an integer between -149 and 104, inclusive.

The finite nonzero values of type double are of the forms s·m· 2e, where s is +1 or -1, m is a positive
integer less than 2^53, and e is an integer between -1045 and 1000, inclusive.

Positive zero and negative zero compare equal (0.0 == -0.0 produces the result true) but there are
other operations that can distinguish them; for example, 1.0/0.0 produces positive infinity but 1.01/-
0.0 produces negative infinity.

Any value of any floating-point type may be cast to any other arithmetic type.

Any value of any floating-point type may be cast to type char, and any character may be cast to any
floating-point type.

There are no casts between floating-point types and the type boolean. Java provides a number of
operators that act on floating-point values:

· the basic equality operators = and ! =
· the relational operators <, <=, >, and >=
· the unary operators + and -
· the additive and multiplicative operators +, -, *, /, and %
· the prefix and postfix increment/decrement operators ++ and --
If both operands are of floating-point type, or if one operand is of floating-point type and the other is
of integral type, the operation is considered a floating-point operation. If at least one of the operands
is of type double, then the operation is carried out using 64-bit floating-point arithmetic (any other
operand that is not double is first cast to type double) and the result, if not boolean, is of type double.
Otherwise, the operation is carried out using 32-bit floating-point arithmetic (any other operand that is
not float is first cast to type float) and the result, if not boolean, is of type float.

Operators on floating-point numbers behave exactly as specified by IEEE 754. Java requires full
support of IEEE 754 denormalized floating-point numbers.

Java requires that floating-point arithmetic behave as if every floating-point operator rounds its
floating-point result to the result precision. Inexact results must be rounded to the nearest
representable value; if two representable values are equally distant from the true mathematical result
of the operation, the result is the value whose least-significant bit is 0. (This is the IEEE 754 "round to
nearest"mode.) Note, however, that Java rounds towards zero when casting a floating value to an
integer.

Java floating-point arithmetic produces no exceptions. An operation that overflows produce a signed
infinity, an operation that underflows produce s a signed zero, and an operation that has no
mathematically definite result produces NaN. Java uses gradual underfiow.

While the usual relational operations apply to IEEE floating-point numbers, the presence of NaN can
produce some surprises. NaN is unordered, so that the result of a <, <=, >, >= or == comparison
between a NaN and another value is always false; in particular, == produces false when both
operands are NaN. The result of a ! = comparison with a NaN is always true, even if the both
operands are NaN.

Character Types and Values
Currently no documentation available from Sun Microsystems on this topic

Boolean Types and Values
The boolean type represents a 1-bit logical quantity with two possible values, indicated by the literals
true and false.

There are no casts defined to or from boolean. (Note, however, that an integer x can be converted to
a boolean, following the convention of the C programming language that treats 0 as false and every
nonzero value as true, by the expression x! = 0. Similarly, a boolean value b can be converted to a
zero/one integer value by the expression b?1 :0.)

Operations defined on boolean include the relational operators == and ! =, the logical operators !, &,
I, and ^, and the short-circuit logical operators && and I I. The control flow in the if, while, do, and for
statements, and which subexpression is to be chosen in the conditional? : operator, are controlled
only by boolean truth values. For arithmetic types, an explicit comparison to zero is needed to turn a
zero/non-zero condition of the value into a truth value; similarly, object references must be explicitly
compared to null to produce usable truth values for use in these places.

Reference Types and Values
 Reference Types and Values
A variable of reference type can hold a reference to any object whose run-time type can be
converted to the variable's compile-time type by assignment conversion.

ClassType:
 Name

InterfaceType:
 Name

ArrayType:
 Type []

Reference Types and Values
 Reference Types and Values
 Class Instances
 Arrays
 Class Types
 Array Types
 Interface Types
A variable of reference type can hold a reference to any object whose run-time type can be
converted to the variable's compile-time type by assignment conversion.

ClassType:
 Name

InterfaceType:
 Name

ArrayType:
 Type []

Class Instances
Created by new, have fields (variables and methods)

Arrays
Created by new, have components, which are variables; can have arrays of arrays; ultimate non-
array components are elements; elements are variables whose type must be a class type, interface
type, or primitive type.

Class Types
Variables of class type can hold references to subclasses. Object can refer to arrays.

Interface Types
Variables of interface type can hold references to objects that implement the interface.

Standard Default Values
No variable in a Java program ever has an undefined value.

When a variable (such as an instance variable or an array component) is first created and no initial
value is explicitly specified in the program, the variable is given the standard default value for its
type:

· For type byte, the standard default value is zero, that is, the value of (byte) 0.
· For type short, the standard default value is zero, that is, the value of (short) 0.
· For type int, the standard default value is zero, that is, 0.
· For type long, the standard default value is zero, that is, 0L.
· For type float, the standard default value is positive zero, that is, 0. Of.
· For type double, the standard default value is positive zero, that is, 0. Od
· For type char, the standard default value is the null character, that is, '\uOOOO'.
· For type boolean, the standard default value is false.
· For all reference types, the standard default value is null.
Note, however, that the Java compiler goes to some trouble to detect prograrns that use variables
before they have been explicitly lnitialized or assigned. The automatic initialization of variables to
standard default values is required to guarantee portability of Java code, but good Java programming
style does not rely on it.

Conversions on Primitive Values
A value of any primitive type may be "converted" to that same type. Of course, this results in no
change to the value or its type.

The following type conversions are called widening conversions:

· byte to short, int, long, float, or double
· short to int, long, float, or double
· char to int, long, float, or double
· int to long, float, or double
· long to float or double
· float to double
Widening conversions do not lose information about the overall magnitude of a numeric value.
Indeed, integer-to-integer and float-to-float widening conversions do not lose any information at all;
the numeric value is preserved exactly. Conversion of an int or a long value to float, or of a long
value to double, may lose precision, that is, may lose some of the least significant bits of the value;
the resulting floating-point value will be a correctly rounded version of the integer value, using IEEE
754 round-to-nearest mode.

According to this rule, a widening conversion of a signed integer to an integral type T simply sign-
extends the twos-complement representation of the integer value to fill the wider format. A widening
conversion of a character to an integral type T zero-extends the representation of the character value
to fill the wider format.

The following type conversions are called narrowing conversions

· byte to char
· short to byte or chart
· char to byte or shor
· int to byte, short, or char
· long to byte, short, char, or int
· float to byte, short, char, int, or long
· double to byte, short, char, int, long or float
Narrowing conversions may lose information about the overall magnitude of a numeric value.; they
may also lose precision.

A narrowing conversion of a signed integer to an integral type T simply discards all but the N lowest-
order bits, where N is the number of bits used to represent type T. This may cause the resulting value
not to have the same sign as the input value.

A narrowing conversion of a character to an integral typeT likewise simply discards all but the N
lowest-order bits, where N is the number of bits used to represent type T. This may cause the
resulting value not to have the same sign as the input value.

A narowing conversion of a floating-point number to an integral type T first truncates the floating-point
value to an integer value (rounding toward zero). If this integer value can be represented as a value
of type T, then that is the result of the conversion. Otherwise the value must be too small (a negative
value of large magnitude) or too large (a positive value of large magnitude). If it is too small, the
result of the conversion is the smallest representable value of type T, if it is too large, the result of the
conversion is the largest representable value of type T. If the floating-point number if NaN, the result

of the conversion is 0.

A narrowing conversion from double to float behaves in accordance with IEEE 754. The result is
correctly rounded using IEEE 754 round-to-nearest mode. A value of small magnitude may be
converted to zero (positive or negative); a value of large magnitude may be converted to infinity
(positive or negative); NaN is always converted to NaN.

A narrowing conversion of an integer to a floating-point type results in the closest possible value in
the target format. The result is correctly rounded using IEEE 754 round-to-nearest mode.

Despite the fact that overflow, underflow, or loss of precision may occur, conversion among primitive
types never results in a run-time exception.

Conversions on Reference Values
An object reference whose run-time type is R can be converted to a class type C if and only if R is C
or a subcIass of C.

An object reference whose run-time type is R can be converted to an interface type I if and only if R
implements I. (Remember that if a class implements an interface, all its subclasses also
automatically implement the interface, even if the subclass declarations do not mention the interface
explicitly.)

An array reference can be converted to a class type C if and only if C is the class Object.

An array reference whose run-time type is R[] (an array whose components have type R) can be
converted to an array typeT [] (an array whose components have type T) if and only if either R and T
are the same primitive type or T is a reference type and R can be converted to T.

Assignment Conversion
Assignment conversion, when applied to a variable and a value, converts the value to the type of the
variable. Assignment permits only certain conversions to take place, namely those that require no
run-time validity check and cannot lose information about numeric magnitude.

If the value of an expression of some compile-time type can be converted to the type of some
variable, we say the expression (or its value) is assignable to the variable. If a type S can be
converted to type T by assignment conversion, we say that S is assignable to T.

A value of any compile-time type can always be assigned to a variable of that same type. No
conversion action need occur at run time, of course.

Consider this sequence of primitive types:

 byte short int long float double

Assignment conversion can convert any type in this series to any type that appears to its right.
Furthermore, the same is true of this series:

 char int long float double

Such conversions are performed at run time as described in

The type boolean cannot be assigned to any other type.

A value of primitive type must not be assigned to a variable of reference type; similarly, a value of
reference type must not be assigned to a variable of primitive type.

Assignment of a value of reference type to a variable of reference type requires no conversion action
at run time. The basic principle is that the compiler must be able to prove from the compile-time type
of the value that it can always be converted to the type of the variable. The detailed rules for
assignment conversion of reference types are shown in Table 1.

T is a class
that is not final

T is a class
that is final

T is an
interface

T = B [], an
array with
components
of type B

S is a class
that is not final

T must be a
subclass of S

T must be a
subclass of S

compile-time
error

S must be
Object

S is a class
that is final

T must be the
same class as
S

T must be the
same class as
S

compile-time
error

compile-time
error

S is an
interface

T must
implement
interface S

T must
implement
interface S

T must be a
subinterface
of S

compile-time
error

S = A [], an
array with
components
of type A

compile-time
error

compile-time
error

compile-time
error

either A and B
are the same
primitive type,
or A is a
reference type
and B can be
assigned to A

Table 1: Rules for permitted assignment conversion when assigning a reference value of type

T to a variable of type S

Casting Conversion
Casting conversions are more general than assignment conversions. If a conversion is possible at
all, a cast can do it.

A value of any compile-time type can always be cast to that same type. Such a cast has no run-time
effect, of course, and serves only to indicate explicitly that the resulting value will be of the indicated
type.

Casting can convert a value of any arithmetic type to any other arithmetic type. The type boolean
cannot be cast to any other type.

A value of primitive type cannot be cast to a reference type; similarly, a value of reference type
cannot be cast to a primitive type.

Casting of a value of reference type to a variable of reference type may require a run-time validity
check. The basic principle is that if the compiler is able to prove from the compile-time type of the
value that it can always be converted to the type of the variable (that is, that assignment conversion
applies), then no run-time check is required; otherwise, execution of the cast operator must verify at
run time that the run-time type is compatible with the type of the variable (and if it is not compatible,
an exception is thrown).

Some casts can be proven incorrect at compile time; such casts result in a compile-time error. The
detailed rules for compile-time correctness of casting conversions on reference types are shown in
Table 2.

T is a class
that is not final

T is a class
that is final

T is an
interface

T = B [], an
array with
components
of type B

S is a class
that is not final

T must be a
subclass of S,
or S of T

T must be a
subclass of S

always correct
at compile-
time

S must be
Object

S is a class
that is final

S must be a
ubclass of T

T must be the
same class as
S

S must
implement
interface T

compile-time
error

S is an
interface

always correct
at compile-
time

T must
implement
interface S

always correct
at compile-
time

compile-time
error

S = A [], an
array with
components
of type A

T must be
Object

compile-time
error

compile-time
error

either A and B
are the same
primitive type,
or A is a
reference type
and B can be
cast to A

Table 2. Rules for permitted casting conversion when casting a reference value of type T to
type S

Unary Arithmetic Promotion
When an operator applies unary arithmetic promotion to a single operand, the following rules apply,
in order:

· If the operand is of type byte or short, it is converted to int.
· Otherwise it remains as is and is not converted

Binary Arithmetic Promotion
When an operator applies binary arithmetic promotion to a pair of operands, the following rules apply,
in order:

· If either operand is of type double, the other is converted to double
· Otherwise, if either operand is of type float, the other is converted to float.
· Otherwise, if either operand is of type long, the other is converted to long.
· Otherwise, both operands are converted to type int.

Names
A name is an identifier that has been given meaning in a program by a declaration. A name denotes
either:

· a package, which is introduced by a package statement (§ Packages and Directories),
· a type, which is introduced by a class or interface declaration (§ Class and Interface Tye

Declarations),
· a field, which is a variable in a class or interface type (§ Field Declarations),
· a group of methods of a class or interface type (§ Method Declarations),
· a variable that is a formal parameter of a method,
· a variable that is local to a block (§ Local Variable Declarations), or
· a statement label (§ Labeled Statements).
An expression is also said to have a denotation (§ Value of an Expression), and can denote
everything a name can denote as well as:

· a directory that is part of a package name,
· an array type,
· a value of a primitive type,
· a variable that is an element of an array,
· a reference to an object, or
· null, which is a reference to no object.
If a name or expression denotes a variable or a value of a primitive type, then the type of that
variable or primitive value is called the type of the name or the expression.

Variables, Values and References
A variable is a typed storage location. A variable contains either a value of a primitive type (§
Literals), (§ Conversions), or a reference to an object. An object is an instance of a class type (§
Class and Interface Type Declarations) or an instance of an array type (§ Arrays).

Variables have two main attributes: their type and their storage class (§ Storage Classes).

A variable's type is either a primitive type or an object type. An object type may be a class type, an
interface type, or an array type.

A variable must always contain a value consistent with its type; in fact, Java is so designed that it is
impossible for a variable to take on a value inconsistent with its type.

Storage Classes
The storage class determines the lifetime of a variable.

Local variables are declared and allocated within a block and are discarded on exit from the block.
Method parameters are considered local variables.

Static variables are local to a class; they are allocated when the class is loaded and discarded when
the class is unloaded.

Dynamic objects are instances of classes and arrays. They are allocated by the new expression (§
Allocation Expressions) and may be referenced by more than one variable. Automatic storage
management techniques, such as garbage collection, are used to reclaim the storage used by
dynamic objects. A class may declare a finalize method (§ Automatic Storage Management and
Finalization) that will be called just before an instance of that class is discarded.

Name Spaces
Each name declared in a program is defined at a lexical level, and becomes part of a name space at
that level. The name spaces in a Java program lexically nest as follows:

0. Host system's package name space
 1. A compilation unit's name space
 2. A type's name space
 3. A method's parameter name space
 4. A Iocal block's name space
 5. A nested localblock or for's name space

The name spaces thus differ in the kinds of declarations they contain:

· a compilation unit's name space contains the type names declared in all compilation units of the
package it belongs to and any package names or type names that are imported (§ Compilation
Units),

· a type's name space contains its declared fields as well as any field names inherited from
superclasses and interfaces (X.X),

· a method's parameter name space contains the formal parameters of the method (§ Method
Declarations),

· a local block's name space contains local variables and labels declared in the block, and
· a for statement's name space contains any local variables declared in the initialization part of the

for statement (§ The for Statement).
Names introduced by import statements and local variable declarations must be declared before they
are used. All other names are known throughout the name space in which they appear.

The host system package name space consists of the first component of the names of all of the
packages that are available on the host system. It:

· always contains the java package name, used internally by the Java system,
· usually contain several all-upper-case ISO-LATIN-1 package names such as COM, EDU and FR;

such names are reserved to be the first component of global package names, and should not
otherwise be used,

· usually contains local packages whose initial names are not all upper-case ISO-LATIN-1 letters,
which represent locally developed packages, and any other packages that have not been given
globally unique names.

Name Resolution
When a name occurs in a Java program it is resolved by looking successively in the namespaces of
each lexical level, looking from the highest nesting level to the lowest. Only the first match is
considered.

Let F be the class or interface whose definition contains the declaration of a field variable. Access to
the field is controlled as follows:

· If F is the same as the class or interface in whose body the field access expression appears,
then the access is allowed.

· Otherwise, if F is a class (not an interface) that is a superclass of the class in whose body the
field access expression appears, then access is allowed only if the field is declared to be
protected or public.

· Otherwise, if F is defined in the same package as the class or interface in whose body the field
access expression appears, then the field access is allowed unless the field is declared private.

· Otherwise, the field access is allowed only if the field is declared public.
If a field access is not allowed, a compile-time error results.

External Access
Name may be used from outside the scope of their declaration as follows:

· for package names: if the host system permits access.
· for type names declared in a different package: if the host system permits access to the package

and the type is declared public (§ Class Modifiers), (§ Field Access).
· or field names in the same package: if the field is not declared private
· for field names in a different package: if the host system permits access to the package, the type

is declared public (§ Class Modifiers), and either
 * the field is declared public (§ Field Access), or
 * the field is declared protected and the use is from within the declaration of a subclass
of the said type.

Access control is determined by the compile-time (static) types of objects. A subclass may not be
declared public, yet may be available outside the package where it is declared if it has a public
superclass, since it can, for example, be assigned to a variable of this public type. Invocation of a
public method of this variable's declared (compile-time) type may invoke a method of the (non-public)
subclass if this method overrode a method of the public superclass(§ Method Calls).

Rules about Names
If it denotes a declared entity the entity is either:

· a package,
· a type (which is either a class or an interface),
· a field variable, which is either final or not and static or not,
· a set of fields which are a group of one or more methods with the same name,
· a variable which is an argument of a method,
· a local variable which is either final or not, or a
· statement label.
If it denotes an undeclared entity it is either:

· a directory which are part of a package name, and which may contain further directories and/or a
package,

· a value of a primitive type, either a integer value of type byte, short, int, or long, a floating-point
value of type float or double, where the integer and floating-point type are collectively called
arithmetic types, a boolean value of true or false, or a char value which is a Unicode character
(note that char is not an arithmetic type),

· an assignable variable including elements of arrays,
· a reference to an object, which is known to be an instance of a specific class. or of one of this

classes subclasses,
· a reference to an object, which is known to be an instance of some class

supporting a specific interface,
· a reference to an object which is known to be an array of some type T,
· null, which is a reference to no object, or
· void, which is the result of a method which returns no value.

Packages and Directories
Java source code is organized into packages that have hierarchical names.

Each component of a package name is an identifier. In a typical Java implementation, package name
components may be identified with directory names in a hierarchical file system, wherein each
directory can contain zero or more subdirectories and/or the compilation units of a single package.

PackageName:
 PackageNameComponent
 PackageName . PackageNameComponent

PackageNameComponent:
 Identifier

Globally Unique Package Names
Java packages that are to be widely used should be given globally unique package names. This will
allow them to be easily installed and catalogued. Java specifies a convention for generating globally
unique package names.

You form a globally unique name by first having (or belonging to an organization that has) an Internet
Domain Name, such as Sun.COM. You then reverse this name, component by component, to obtain,
in this example, COM.Sun, and use this as a prefix for your package names, using a convention
developed within your organization to further administer package names. Such a convention might
specify that certain directory name components be division, department, project, machine, or login
names. Some possible examples::

COM.Sun.sunsoft.DOE
COM.Sun.java.jag.scrabble
COM.Apple.quicktime.v2
EDU.cmu.cs.bovik.cheese
GOV.whitehouse.socks.mousefinder

The first component of a unique name is always written in all-uppercase ASCII letters and should be
COM, EDU, GOV, MIL, NET, ORG, or one of the English two-letter codes identifying countries as
specified in ISO Standard 3166, 1981. For more information, refer to the documents stored at ftp:/
/rs.internic.net/rfc, for example rfc92O .txt and rfclO32 .txt.

Package names whose first component does not consist entirely of uppercase ASCII letters are
reserved for local use, with the sole exception of the predefined portions of the Java language and
system, which use the name java.

If you need to get a new Internet Domain Name, you can get an application form from ftp://
ftp.internic.net and submit the complete forms to domreg@internic.net. If you want to check what the
currently registered domain names are, you can telnet to rs .internic.net and use the whois facility.

Locating Packages on a Host System
In a typical hosted implementation of Java package names are transformed into a pathname, by
concatenating the components of the package name, placing a file name separator between them.

Thus on UNIX Systems, where the file name separator is /, the package name:

 jag. fun.scrabble

is transformed to the directory name:

 jag/fun/scrabble
and
 COM. Sun.sunsoft.DOE

is mapped to the directory name:

 COM/Sun/sunsoft/DOE

On UNIX, the CLASSPATH environment variable then provides a list of directories that provide roots
for a search for a directory with this name.

If a package name component or class name contains a character which may not appear in a host
file system's ordinary directory name, for example a Unicode character on a svstem which has only
ASCII file names, then the character should be escaped by using a @ character followed by one to
four hexadecimal digits giving the Unicode code point of the escaped character, as in the \uxxxx
escape (§ Unicode Escapes), so that:

 COM. Sun. java. java2\u23b

is mapped to the directory name:

 COM/Sun/ java/java2@23b

Compilation Unit Name Space
A compilation unit creates a name space which contains imported type names, imported package
names, and all the type names declared in all the compilation units of the package. The imported and
declared names must all be distinct.

Standard Imports
Each compilation unit automatically imports each of the type names defined in the predefined
package java.lang, such as Int, Float, Object, String, and NullPointerException.

The Import Statement
An import statement causes an name to denote a package or type which is declared elsewhere:

ImportStatement:
 PackagelmportStatement
 TypelmportStatement
 TypelmportOnDemandStatement

PackagelmportStatement:
 import PackageName

TypelmportStatement:
 import PackageName . Identifier ;

TypelmportonDemandStatement:
 import PackageName . * ;

A package import statement causes the named package to be known by the name of its last
component. So after:

import java.io;

the types in java.io are known both as io.name and as java.io.name.

A type import statement causes the single public type from the named package to be available, thus

import java.util.Vector;

causes the name Vector to be interchangeable with the full name java. util Vector.

It is a compile-time error for either a package or a type import to attempt to declare a name which is
already declared by another import or as a type name in this package.

A type import on demand statement causes public types declared in the named package to be made
ready to be imported as needed. Whenever Java is looking up a name in a package name space and
the name is not found Java will look to see if the name is declared and public in a type imported by a
type import on demand statement, and automatically import the name to the compilation unit's name
space if it is found there.

It is a compile-time error for an undefined type name to be used and then found to be declared public
in two or more packages which are being imported on demand.

The Java compiler and run-time keep track of packages and types within packages by their true
names and are not fooled by having multiple ways of naming packages as introduced by import.

Class and Interface Type Declarations
A class declaration introduces a new reference type with an implementation that is derived from the
implementation of another class called its immediate superclass; we say that a class extends its
immediate superclass because it may provide additional implementation details. The single
implementation inheritance Java provides for classes supports code reuse. Every object is an
instance of some class.

The superclass relationship is the reflexive transitive closure of the immediate superclass
relationship. Thus class A is a superclass of class C if and only if at least one of the following is true:

· A is the same as C.
· A is the immediate superclass of C.
· There is some class B such that A is a superclass of B and B is a superclass of C.
Class A is a proper superclass of class B if and only if A is a superclass of B but is not B.

Class B is an immediate subclass of class A if and only if class A is the immediate superclass of class
B. Class B is a subclass of class A if and only if class A is a superclass of class B. Class B is a proper
subclass of class A if and only if class A is a proper superclass of class B.

A variable whose declared type is a class type C may have as its value a reference to an object that
is an instance of C or of any subclass of C.

An interface declaration introduces a new reference type that specifies a set of method signatures
and some associated named constants, but does not specify an implementation. An interface may be
declared to be an immediate extension of one or more other interfaces, meaning that it implicitly
specifies all the method signatures and named constants of the interfaces it extends, perhaps adding
method signatures or named constants of its own.

The extension relationship is the reflexive transitive closure of the immediate extension relationship.
Thus interface K is an extension of interface I if and only if at least one of the following is true:

· K is the same as I
· K is an immediate extension of I.
· There is some class J such that K is an extension of J and J is an extension of I.
Interface K is a proper extension of interface I if and only if K is a extension of I but is not I.

A class may be declared to implement one or more interfaces, meaning that any instance of the class
implements all the method signatures specified by the interface. This (multiple) interface inheritance
allows objects to support (multiple) common behaviors without sharing any implementation. If a class
is declared to implement an interface, then all its subclasses (including the class itself) are implicitly
considered to be declared to implement all interfaces (including the interface itself) of which that
interface is an extension

A variable whose declared type is an interface type may have as its value a reference to an object
that is an instance of any class that is declared to implement the specified interface. (It is not
sufficient that the class happen to implement all the method signatures specified by the interface; the
class or one of its superclasses must actually be declared to implement the interface.)

Class Declarations
 Class Declarations
A class declaration introduces a new reference type and specifies part or all of its implementation.

ClassDeclaration:
 ClassModifiersopt class Identifier Superopt Interfacesopt ClassBody

The Identifier is the name of the class; the fully qualified name of the class is P. Identifier where P is
the fully qualified name of the package of the compilation unit in which the class is declared. The
class declaration has a body that may contain field definitions. A class declaration may optionally
have modifiers, specify its immediate superclass, and specify interfaces that it implements.

Class Declarations
 Class Declarations
 Class Modifiers
 Superclass Specification
 Implemented Interfaces
 Class Body
 Class Name Space
 Multiple Declarations of a Single Name
 Visibility of Field and Class Names
A class declaration introduces a new reference type and specifies part or all of its implementation.

ClassDeclaration:
 ClassModifiersopt class Identifier Superopt Interfacesopt ClassBody

The Identifier is the name of the class; the fully qualified name of the class is P. Identifier where P is
the fully qualified name of the package of the compilation unit in which the class is declared. The
class declaration has a body that may contain field definitions. A class declaration may optionally
have modifiers, specify its immediate superclass, and specify interfaces that it implements.

Class Modifiers
ClassModifiers:
 ClassModifier
 ClassModifiers ClassModifier

ClassModifier: one of
 abstract final public

A class that is declared abstract may have abstract methods. It is a compile-time error for a class
containing an abstract method not to be declared abstract.

It is impossible to create an instance of an abstract class: you cannot create an instance of an
abstract class with new (§ Allocation Expressions) or with the newlnstance method of class Class.

A class that is declared final can have no immediate subclasses, and therefore no proper
subclasses, because it may not appear in the extends clause of another class declaration.

A class that is declared public can be accessed from other packages, either directly (§ External
Access) or in an import statement (§ The Import Statement). If a class lacks the public modifier, use
of the class is limited to the package in which it is declared. At most one public class may be
declared in each compilation unit (§ Compilation Units). A compilation unit may not contain both a
public class and a public interface.

It is a compile-time error for a class to be declared both final and abstract.

Superclass Specification
The optional extends clause specifies the immediate superclass of the class being declared.

Super:
 extends TypeName

The TypeName must name an accessible class that is not final. If the extends clause is omitted from
a class declaration, then the class has the class Object (§ Class and Interface Type Declarations) as
its immediate superclass. (Thus all classes are ultimately derived from this single root class, Object,
forming a class hierarchy.)

It is a compile-time error for there to be a circularity that causes a class to directly or indirectly extend
itself. For example, it is not permitted for A to be the immediate superclass of B and for B also to be a
superclass of A.

Implemented Interfaces
The optional implements clause lists interfaces implemented by the class being declared.

Interfaces:
 implements TypeNameList

If the class C being declared is not abstract, every method signature that is declared in any of these
interfaces must be defined by some superclass of C (possibly C itself).

Class Body
The class body consists of a (possibly empty) list of field declarations:

ClassBody:
 { FieldDeclarationsopt }

FieldDeclarations:
 FieldDeclaration
 FieldDeclarations FieldDeclaration

Field declarations introduce new variables and methods to the class; some special methods are
called constructors.

Class Name Space
A class introduces a new name space, built from inherited and declared field names.

The class inherits from its immediate superclass all the field declarations in the name space of the
superclass, except that:

· Fields that are declared private are not inherited.
· Constructors are not inherited.
· If a name is declared as a field variable in the class being declared,no field variable of the same

name is inherited from the superclass; a field variable declaration is said to shadow any field
variable declaration in a superclass. This means the scoping rules for variables are different from
the scoping rules for methods, because variables are shadowed rather than overridden (§
Method Overriding).

To these inherited fields are added the newly declared field declarations of the class itself.

Multiple Declarations of a Single Name
A variable may have the same name as a variable in the name space of its superclass, in which case
the variable in the namespace of the superclass is not inherited but is said to be shadowed. (The
shadowed variable can be accessed using the keyword super (§ Using this, super and Superclass
Type Names), (§ Primary Expressions) or the superclass's type name in a field access expression (§
Field Access).)

It is a compile-time error for a class to declare a method with the same name as a declared or
inherited variable.

It is a compile-time error for a class to declare a variable to have the same name as a declared or
inherited method.

It is a compile-time error for a class to declare two or more variables with the same name.

It is a compile-time error to declare two methods with the same name that take the same number of
arguments and take the same declared type of argument in each argument position. More than one
method with the same name may be declared, provided that, for any two methods of the same name,
they either accept different numbers of arguments or take arguments of different declared type in at
least one argument position. (Such polymorphism is called method overloading and is described in (§
Method Overloading).)

It is a compile-time error to declare two constructors that take the same number of arguments and
take the same declared type of argument in each argument position. More than one constructor may
be declared, provided that, for any two of the constructors, they either accept different numbers of
arguments or take arguments of different declared type in at least one argument position. (Such
polymorphism is called constructor overloading and is described in (§ Method Overloading).)

Visibility of Field and Class Names
Every field name is visible throughout the body of the class C in which the field is declared. It is also
visible throughout the body of every subclass of C that inherits the name of the field (§ Class Name
Space).

Every class type name is visible throughout the compilation unit in which the class is declared.

As an example, the following code is all correct:

class A {
 void a () {

f.set(42) ; // forward reference to f is okay
 }
 B f ; // forward reference to B is okay
}

class B
 void set (long n) {
 this.n = n; // See text below
 }
 long n;
}

In the assignment this .n = n; the first occurrence of n (after this.) is, in effect, a
forward reference to the field named n declared two lines later; the second occurrence of n refers to
the method parameter declared one line before the assignment.

Field Declarations
 Field Declarations
Fields are variables and methods. Constructors are methods of a special kind. Static initializers are
used along with the initializers in the declarators of static field variables to define an implicit static
class initialization method.

FieldDeclaration =
 FieldVariableDeclaration
 MethodDeclaration
 ConstructorDeclaration
 StaticInitializer

Field Declarations
 Field Declarations
 Field Access
Fields are variables and methods. Constructors are methods of a special kind. Static initializers are
used along with the initializers in the declarators of static field variables to define an implicit static
class initialization method.

FieldDeclaration =
 FieldVariableDeclaration
 MethodDeclaration
 ConstructorDeclaration
 StaticInitializer

Field Access
Every field other than a static initializer may be declared to be public, protected, or private to control
access to the declared entity. (This control allows the programmer to hide details of the
implementation of an abstraction from the users of the abstraction.)

A public field is accessible anywhere the class name is accessible.

A protected field is throughout the package that contains the class in which the field is declared, and
is also also accessible (unless shadowed) within the body of any subclass of that class.

A private field is accessible only within the class body in which the field is declared.

If none of the keywords public, protected, or private is specified, the field is throughout the package
that contains the class in which the field is declared but is not accessible within the body of any
subclass of that class if the subclass is declared in another package.

It is a compile-time error to mention more than one of public, protected, or private in a single field
declaration. It is a compile-time error to mention the same modifier more than once in a single field
declaration.

Variable Declarations
 Variable Declarations
FieldVariableDeclaration:
 VariableModzfiersopt Type VariableDeclarators

More than one field variable may be declared in a single field variable declaration by writing more
than one declarator. The specified Type (§ Types and Values) and modifiers apply to all the
declarators in the declaration.

Variable Declarations
 Variable Declarations
 Variable Modifiers
 Variable Declarators
 Variable Initializers
FieldVariableDeclaration:
 VariableModzfiersopt Type VariableDeclarators

More than one field variable may be declared in a single field variable declaration by writing more
than one declarator. The specified Type (§ Types and Values) and modifiers apply to all the
declarators in the declaration.

Variable Modifiers
VariableModifiers:
 VariableModifier
 VariableModifiers VariableModifier

VariableModifier: one of
 public protected private
 static final transient volatile

The field access modifiers public, protected, and private are discussed in (§ Field Access).

A field variable that is not declared static is called an instance variable; there is actually a distinct
variable known by that name associated with every instance of the class or its subclasses. Whenever
a new instance of a class is allocated, a new variable associated with that instance is created for
every field variable declared in that class or any of its superclasses. (Note that this is true even of
shadowed field variables; a new variable is created and can be accessed, though not simply by its
name alone.)

If a field variable is declared static, there is exactly one variable of that name, no matter how many
instances (possibly zero) of the class are created. A static field variable is sometimes called a class
variable because it is regarded as belonging to the class itself rather than to instances of the class.

A variable declared final must be assigned a value by including a variable initializer in its declarator.
Any other attempt to assign to the variable results in a compile-time error.

Variables may be marked transient to indicate to low-level parts of the Java virtual machine that they
are not part of the persistent state of an object. The transient attribute will to be used to implement
some functions in later versions of the Java system. It is a compile-time error if a transient variable is
also declared final or static.

A variable declared volatile is known to be modified asynchronously. The compiler arranges to use
such variables carefully so that unsynchronized accesses to volatile variables are observed in some
global total order. This means that variables which are declared volatile are reloaded from and stored
to memory at each use, in a way that is coherent throughout a multiprocessor.

Variable Declarators
VariableDeclarator:
 DeclaratorName
 DeclaratorName = VariableInitializer

DeclaratorName:
 Identifier
 DeclaratorName []

Variable Initializers
VariableInitializer:
 Expression
 { ArrayInitializersopt ' opt }

ArrayInitializers:
 VariableInitializer
 ArrayInitializers ,

If a variable declarator contains a variable initializer, then it behaves exactly as if it were an
assignment (§ Assignment Operators) to the declared variable. See also § Array Initialization, which
describes the treatment of array initializers.

If the declarator is for a static field variable, the variable initializer is computed and the assignment
performed once, when the class is loaded (§ Class Loading and Initialization).

If the declarator is for an instance variable, the variable initializer is computed and the assignment
performed as part of the execution of certain constructors for the class in which the instance variable
is declared (§ The Body of a Constructor).

If the declarator is for a local variable, the variable initializer is computed and the assignment
performed as part of the execution of the variable declaration statement.

Examples of variable declarations:

int x, y;
float z = 1.0;
java.lang.String foo = "foo";
Object 0 = foo;
Exception e = new Exception () ;
double trouble [] = new double [27];

Method Declarations
 Method Declarations
A method is a chunk of executable code that can be invoked, possibly passing it certain values as
arguments. Every method definition belongs to some class and must appear within the body of the
class definition.

MethodDeclaration:
 MethodModifiersopt ResultType MethodDeclarator Throwsopt MethodBody

Method Declarations
 Method Declarations
 Method Modifiers
 Result Type
 Parameter List
 Throws
 The Body of a Method
 Using this, super and Superclass Type Names
 Using Superclass Names
 Method Overloading
 Method Overriding
A method is a chunk of executable code that can be invoked, possibly passing it certain values as
arguments. Every method definition belongs to some class and must appear within the body of the
class definition.

MethodDeclaration:
 MethodModifiersopt ResultType MethodDeclarator Throwsopt MethodBody

Method Modifiers
MethodModifiers:
 MethodModifier
 MethodModifiers MethodModifier

MethodModifier: one of
 public protected private
 static
 abstract final native synchronized

The field access modifiers public, protected, and private are discussed in (§ Field Access).

A method that is not declared static is called an instance method. Such a method can be invoked
only relative to some particular object that is an instance of the method's class or one of its
subclasses.

A method that is declared static is sometimes called a class method because it is regarded as
belonging to the class itself rather than operating within instances of the class. A static method may
refer to other fields and methods of the class by name only if they are also static.

Every static method is implicitly final. It is permitted but not required for the modifier final to appear
redundantly along with the modifier static in a method declaration. Note that because every static
method is implicitly final, it is not possible to override a static method.

Methods which are static are called class methods. Restrictions on static methods:

· Static methods can refer to other fields and methods of the class only if they are also static.
· A static method is implicitly final, so no overriding occurs on static methods.
A method can be declared abstract, in which case no implementation is provided for the method. The
method declaration contains no body (a semicolon appears instead of a block). The declarration of
an abstract method (call it m) must appear within an abstract class (call it A); otherwise a compile-
time error results. Such a declaration merely defines the calling signature and return type for m.
Every subclass of A that is not abstract must provide an implementation for m. To be precse, for
every subclass C of the abstract class A, if C is not abstract then there must be some class B such
that
(1) B is a superclass of C (possibly C itself);
(2) B is a subclass of A;
(3) B is not abstract; and
(4) B overrides m, thereby providing an implementation for rn visible to C.

A private method cannot also be declared abstract (it is impossible to override a private method, so
such a method could never be used).

A static method cannot also be declared abstract (a static method is implicitly final, so it is impossible
to override a private method, so such a method could never be used).

A method that is declared final cannot be overridden; it is a compile-time error to attempt to override
a final method. A private method is effectively final, even if not explicitly declared final, as are all
methods declared in a final class, even if the methods are not explicitly declared final. In both these
cases, it's permitted but not required for the modifier final to appear redundantly in such a method
declaration. Note that if a method is final or effectively final, an optimizing compiler may be able to
"inline" the method, that is, replace a call to the method with the code in its body.

A method can be declared native, in which case the method is implemented in a platform-dependent

way, for example, in C or assembly language. Because the implimentation is not provided by Java
Language code, the method declaration contains no body (a semicolon appears instead of a block).
Native methods are otherwise like normal Java methods; they are inherited, may be static or not,
may be final or not, may override or be overridden by non-native methods, and so on.

A synchronized method will acquire a monitor lock before it executes; the lock is per class if the
method is static, per object otherwise.

Result Type
A method declaration either specifies the type of value that the method returns or uses the keyword
void to indicate that the method does not return a value.

A method that returns an array may be declared with the empty bracket pairs preceding the method
name (as part of the result type) or following the argument list (as would be expected by a
programmer accustomed to the declarator syntax of the C programming language), or with some
bracket pairs in each place (§ Declarations of Array-valued Variables).

ResultType:
 Type
 void

MethodDeclarator:
 DeclaratorName (ParameterListopt)
 MethodDeclarator []

Parameter List
The formal parameters of a method, if any, are specified by a list of comma-separated parameter
specifiers. Each parameter specifier consists of a type and a name; as in other places in the Java
Language, if the the type of the parameter is to be an array type, the empty bracket pairs may
appear preceding the name (as part of the type specifier) or following the parameter name (as would
be expected by a programmer accustomed to the declarator syntax of the C programming language),
or with some bracket pairs in each place (§ Declarations of Array-valued Variables).

If a method has no parameters, only an empty pair of parentheses appears in the method
declaration.

ParameterList:
 Parameter
 ParameterList , Parameter

Parameter:
 Type DeclaratorName

DeclaratorName:
 ldentifler
 DeclaratorName []

The parameters are local variables of the method, in the method name space, but declared outside
the method's body.When the method is called, these local variables are freshly instantiated for the
call; the values of the acrual argument expressions are assigned to the fresh parameter variables
before execution of the body of the method.

The parameter list for a constructor is identical in structure and behavior to the parameter list for an
ordinary method

Throws
A method must declare any normal exceptions that can result from its execution:

Throws:
 throws TypeNameList

TypeNameList:
 TypeName
 TypeNameList , TypeName

If a method declaration contains a throws clause, it is a compile-time error if an exception can be
thrown from the body of the method whose compile-time type is not assignable (§ Assignment
Conversion) to either Error, RunTimeException, or one of the types mentioned in the throws clause. It
is a compile-time error if any name in the throws clause does not name an accessible type that is a
assignable to the type Throwable (perhaps Throwable itself).

If a method declaration does not contain a throws clause, it is a compile-time error if a normal
exception can be thrown from the body of the method.

A method that overrides another method may not be declared to throw more exceptions than the
overridden method. More precisely, if B is a subclass of A, a method declaration in B overrides a
method declaration in A, and B has a throws clause, then

The throws clause for a constructor is identical in structure and behavior to the throws clause list for
an ordinary method

The Body of a Method
MethodBody:
 Block
 ;

If a method is abstract or native, then its MethodBody must be a semicolon.

In all other cases, the MethodBody must be a block. If the method that is not abstract or native needs
no executable code, then an empty block () should be used.

Using this, super and Superclass Type Names
Within the definition of an instance method, (one that is not static), the keyword this represents the
current object. For example, an object may need to pass itself as an argument to another object's
method:

class Myclass extends {
 void aMethod (Otherclass obj) {
 ...
 obj. Method (this) ;
 ...
 }
}

The this keyword is a reference to the current object; its type is the class containing the currently
executing method.

Anytime a method refers to its own instance variables or methods, an implicit "this." is in front of each
reference:

class Foo {
 int a;
 ...
}
class Bar extends Foo {
 int a, b, c;
 ...
 void myprint () {
 print (a + " \n") ; // a == "this.a"
 print (super.a); // Foo's a
 print (Foo.a); // also Foo's a
 }
 ...
}

The super keyword is a reference to the superclass, i.e. equivalent to ((Foo) this) in the example
above.

A superclass's name may be used in a field access expression (§ Field Access) to access the
superclass's fields and methods, usually because they are hidden or overridden.

Using Superclass Names
The names of the superclasses of the current type may also be used to access instance (non-static)
methods and variables:

class A {
 Object x;
}
class B extends A {
 float x;
}
class C extends B {
 char x;
 void m () {
 char cx = x; // C's x is a char
 float bx = B.x; // B's x is a float
 // ... super.x would also work here
 Object ax = A.x; // A's x is a object
 }
}

Method Overloading
Java allows overloading (polymorphic) method declarations: there can be more than one method
with the same name visible within a class provided the methods differ in the number of parameters or
in the types of the parameters.

When a method is to be called, the number of actual arguments and the compile-time types of the
actual arguments are used at compile time to determine which method definition will actually be
invoked. If there is a possibllity that the method may be overridden, a dynamic method dispatch may
also be used at run time. See § Method Calls for a complete description of compile-time method
selection and run-time dispatch.

Method Overriding
Java allows overriding method declarations: a class may inherit from one of its superclasses a
method with a certain name and a certain number of parameters with certain types and yet also
declare a method of the same name with the same number of parameters, with corresponding
parameters having the same type.

The access modifier of the overriding method must provide at least as much access as the
overridden method:

· If the declaration of the overridden method does not contain any of the modifiers public,
protected, or private, then the overriding method must not be private.

· If the overridden method is protected, then the overriding method must be public or protected
· If the overridden method is public, then the overriding method must be public.

The return type of an overriding method must be assignable (§ Assignment Conversion) to the return
type of the overridden method.

An overridden method can be invoked within a class containing the overriding method by using the
super keyword in a method call:

setThermostat(...) // refers to the overriding method
super. setThermostat (...) // refers to the overridden method

A private method is not inherited and hence is not available to be overridden. It is permitted for a
proper subclass of a class contaning a private method to declare a method of the same name with
the same number of parameters, with corresponding parameters having the same type; but this is
not considered to be a case of overriding, so the method in the proper subclass need obey the
restrictions imposed by overriding; for example, the return type of the method in the subclass need
not bear any relation to the return type of the private method.

It is not permitted for two method declarations within the same class to have the same name, the
same number of parameters, and corresponding parameters of the same type; this situation is a
compile-time error.

Constructor Method Declarations
 Constructor Method Declarations
A constructor is a special kind of method that is used to initialize a newly created object. Constructors
have a special declaration syntax and a special invocation syntax.

ConstructorDeclaration:
 ConstructorModifieropt ConstructorDeclarator Throwsopt ConstructorBody

ConstructorDeclarator:
 Typename (ParameterListopt)

The TypeName in the ConstructorDeclarator must name the class that contains the constructor
declaration. A constructor has no separate name of its own. (At the level of the Java Virtual Machine,
every constructor has the special name <init>. This name is supplied by the Java compiler. Because
it is not a valid identifier, this name cannot be used directly by a Java programmer.)

A constructor has no separately declared result type. For the purpose of using return statements, the
return type of a constructor is implicitly void.

If a class contains no constructor declarations, then a default constructor is implicitly and
automatically provided. The default constructor takes no arguments; it simply calls the superclass
constructor super () with no arguments and then performs instance variable initialization. (As a
special case, the default constructor for class Object does not invoke super () because Object has
no superclass.) It is a compile-time error if the superclass does not have a constructor that takes no
arguments.

Unlike ordinary methods, constructors are not inherited by subclasses (§ Class Name Space).

Constructor Method Declarations
 Constructor Method Declarations
 Constructor Modifiers
 Parameter List
 Throws
 The Body of a Constructor
 Object Creation
A constructor is a special kind of method that is used to initialize a newly created object. Constructors
have a special declaration syntax and a special invocation syntax.

ConstructorDeclaration:
 ConstructorModifieropt ConstructorDeclarator Throwsopt ConstructorBody

ConstructorDeclarator:
 Typename (ParameterListopt)

The TypeName in the ConstructorDeclarator must name the class that contains the constructor
declaration. A constructor has no separate name of its own. (At the level of the Java Virtual Machine,
every constructor has the special name <init>. This name is supplied by the Java compiler. Because
it is not a valid identifier, this name cannot be used directly by a Java programmer.)

A constructor has no separately declared result type. For the purpose of using return statements, the
return type of a constructor is implicitly void.

If a class contains no constructor declarations, then a default constructor is implicitly and
automatically provided. The default constructor takes no arguments; it simply calls the superclass
constructor super () with no arguments and then performs instance variable initialization. (As a
special case, the default constructor for class Object does not invoke super () because Object has
no superclass.) It is a compile-time error if the superclass does not have a constructor that takes no
arguments.

Unlike ordinary methods, constructors are not inherited by subclasses (§ Class Name Space).

Constructor Modifiers
ConstructorModifier: one of
 public protected private

The field access modifiers public, protected, and private are discussed in (§ Field Access). Note that
constructors are not referenced directly by name, but through the use of allocation expressions (§
Allocation Expressions) or the newlnstance method of class Class; the access restrictions indicated
by field access modifiers (or their absence) apply to these indirect means of reference.

Note that a class can be designed to prevent code outside the class definition from creating
instances of the class by declaring at least one constructor (to prevent the creation of an implicit
constructor) and declaring all constructors to be private.

The Body of a Constructor
ConstructorBody:
 { ExplicitConstructorCallStatementopt BlockBody }

ExplicitConstructorCallStatement:
 this (ArgumentListopt) ;
 super (ArgumentListopt) ;

The first statement of a constructor may be an explicit call to another constructor of the same class,
written as this followed by a parenthesized argument list, or an explicit call to a constructor of the
immediate superclass, written as super followed by a parenthesized argument list (this is one of the
two places in the Java language where the keyword super has a special meaning and cannot be
replaced by a cast of this to the type of the immediate superclass; see also Method Calls). Note that
an explicit constructor call statement may appear only as the first statement of a constructor body
and nowhere else.

If an explicit constructor call is not present and the constructor begin defined is not for class Object,
then the constructor body is implicitly assumed to begin with the statement "super () ; " that is, a call
to the superclass constructor without arguments. Therefore every constructor for every class except
Object effectively begins with a call to some other constructor, either for the same class or for its
immediate superclass.

An explicit constructor call statement may not contain references to instance variables of the object
being created.

A call super (...); to a superclass constructor, whether it actually appears as an explicit constructor
call statement or is implicitly assumed, performs an additional implicit action after a normal return of
control from the superclass constructor: all the instance variables that have initializers are initialized
at that time. More precisely:

for every instance variable declared in the class containing the call,
taken in the order in which the instance variables appear in the class declaration:
if that variable has an initializer and
either the initialization expression is not a constant expression or its value is not the standard default
value for the variable,
then the initialization expression is executed and its value is assigned to the instance variable.

A call this(...); to another constructor in the same class does not perform this additional implicit
action.

Taking all these rules into account, a simple inductive argument shows that when an object of any
given class type is created, constructors for all the superclasses of that class will be called; the body
of the constructor for Object will be executed first, and in general each constructor will be executed
only after the constructors for its superclasses have been executed. All the instance variables of the
object will be initialized; each initializer will be executed exactly once per object creation; when an
initialization expression is executed, all instance variables declared in superclasses and all instance
variables preceding it in the same class declaration will already have been initialized.

class ColoredPoint {
 double x, y;
 Color C = blue;
 Point new (f loat xVal, float yVal) {
 // implicit super () call here.
 // implicit assignment of blue to c here.
 x = xVal; y = yVal;

 }
 Point new () { // default Constructor
 this (0.0, 1.0); // default value
}

It is a compile-time error for instance variable initializations to have a forward dependency. For
example, the following code:

class Z {
 int i = j + 2;
 int j = 4;
}

results in a compile-time error.

Object Creation
An object can be created by an allocation expression (§ Allocation Expressions), which performs
these steps:

· A new object is created of the specified type. As the new object is created, all its instance
variables are initialized to their standard default values (§ Standard Default Values).

· The appropriate constructor for the newly created object is invoked on whatever actual
arguments appear in the allocation expression. For a use of the newInstance method, the
constructor that takes no arguments is invoked.

· After the constructor has returned, a reference to the newly created and initialized object is the
value of the allocation expression.

An object can also be created by a call to the newlnstance method of class Class, which performs
these steps:

· A new object is created of the type represented by the class object for which the newlnstance
method was invoked. As the new object is created, all its instance variables are initialized to their
standard default values (§ Standard Default Values).

· The constructor for the newly created object is invoked with no actual arguments.
· After the constructor has returned, a reference to the newly created and initialized object is

returned as the value of the call to the newlnstance method. The compile-time type of this
reference will be Object, which is the declared return type of the newlnstance method, but its run-
time type will be the type represented by the class object for which the newlnstance method was
invoked.

Automatic Storage Management and Finalization
When an object is no longer referenced, this may be detected by the automatic storage management
of the Java system. Automatic storage management typically makes use of so-called "garbage
collector" algorithms. Once it has been determined that an object is no longer referenced, the storage
it occupies may be reclaimed immediately and recycled for other use -unless the dynamic object has
a finalizer.

A class may request finalization of its instances by implementing a non-static method named finalize
that takes no arguments and returns no value:

void finalize();

Such a method is called a finalizer. This method must not be declared with any method modifiers (§
Method Declarations).

When an object is no longer referenced, but has a finalizer, the Java system will (eventually) call the
finalizer before reclaiming the storage occupied by the object.

After an object has been finalized, no further reclamation action is taken until the automatic storage
management determines again that it is no longer referenced. This is necessary because the
finalizer may have resurrected the object by making it accessible once again, perhaps by storing a
reference to the object into some accessible variable. The finalizer is never called more than once for
each object, so an object can be resurrected at most once.

When an object is no longer referenced, but has a finalizer, but the finalizer has already been called
for that object, the storage occupied by the object may be reclaimed immediately and recycled for
other use.

If an uncaught exception occurs during the finalization, the exception is ignored. The finalizer will not
be called again for that object.

The Java language makes no guarantees about when or in what order objects will be finalized.

The Java language makes no guarantees about which thread will invoke the finalizer for any given
object. It is guaranteed, however, that the thread that invokes the finalizer will not be holding any
user-visible synchronization locks when the finalizer is called.

The purpose of finalizers is to provide a chance free up resources (such as file descriptors or
operating system graphics contexts) that are owned by objects but cannot be accessed directly and
cannot be freed automatically by the automatic storage management. Simply reclaiming an object's
memory by garbage collection would not guarantee that these resources would be reclaimed.

Class Loading and Initialization
 Class Loading and Initialization

Class Loading and Initialization
 Class Loading and Initialization
 Class Loading
 Static Variable Initialization

Class Loading
A class is loaded when it is needed, either because it is implicitly needed by another class, or
because its is explicitly requested to be loaded using a ClassLoader or the Class. forName method
of the class Class. This is sometimes called dynamic loading.

When a class is loaded, storage is allocated for its static variables. A class object (an instance of the
class Class) is also allocated to represent the class. The class is then initialized.

(At the level of the Java Virtual Machine, a class is initialized by invoking its class initialization
method with no arguments. The class initialization method has the special name <clinit>. This name
is supplied by the Java compiler. Because it is not a valid identifier, this name cannot be used directly
by a Java programmer.)

Static Variable Initialization
The static variables of a class may be initialized by initializers in their declarations or by one or more
static initializers, or both.

Static Initializer:
 static Block

A static initializer is simply some code that is executed when the class containing it is loaded. Static
initializers and variable initializers are executed in the order in which they appear in the class
declaration. For example, when the class

class Z {
 static int a = 1;
 static double b;
 static {
 a++;
 c = 7;
}
static int c = 2;
static Window d = new Window ();
static { b = Math.cos (Math.PI/4.O);
}

is loaded, the following initialization steps occur in the order shown:

· The variable a is set to 1.
· The first static initializer is executed, incrementing a to 2 and setting c to 7.
· The variable c is then set to 2 (the value 7 is lost).
· A new Window is allocated and assigned to variable d
· The variable b is set to the value of the expression Math. cos (Math. P1 /4.0).
It is a compile-time error for static variable initializations to have a forward dependency. For example,
the following code:

class Z {
 static int i = j + 2;
 static int j = 4;
}

results in a compile-time error.

It is a compile-time error for static initializers or initializers for static variables to contain references to
instance variables of the class in whose declaration they appear.

The static initializer code may call static methods of the class being loaded and use other classes
that have already been loaded, but it is a run-time error for there to be a circularity, i.e. a situation
where a class A needs class B to have been loaded to run its static initializer and vice-versa. If this
mutual dependency is detected at compile-time a compile-time error results, if it is detected at run-
time a ClassCircularityException is thrown.

Interface Declarations
 Interface Declarations
An interface declares a type consisting of a set of methods and constants without specifying its
implementation.

Java programs can use interfaces to make it unnecessary for related classes to share a common
abstract superclass or to add methods to Object. This provides the power of multiple interface
inheritance to classes without the messiness of multiple implementation inheritance.

InterfaceDeclaration:
 InterfaceModifiersopt interface Identifier ExtendsInterfacesopt InterfaceBody

Interface Declarations
 Interface Declarations
 Interface Modifiers
 Subinterfaces and the extends Clause
 Body of an Interface
 Variable Declarations in Interfaces
 Method Declarations in Interfaces
An interface declares a type consisting of a set of methods and constants without specifying its
implementation.

Java programs can use interfaces to make it unnecessary for related classes to share a common
abstract superclass or to add methods to Object. This provides the power of multiple interface
inheritance to classes without the messiness of multiple implementation inheritance.

InterfaceDeclaration:
 InterfaceModifiersopt interface Identifier ExtendsInterfacesopt InterfaceBody

Interface Modifiers
InterfaceModifiers:
 InterfaceModifier
 InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
 public abstract

An interface that is declared public can be accessed from other packages, either directly (§ External
Access) or in an import statement (§ The Import Statement). If an interface lacks the public modifier,
use of the interface is limited to the package in which it is declared. At most one public interface may
be declared in each compilation unit (§ Compilation Units). A compilation unit may not contain both a
public interface and a public class.

Every interface is implicitly abstract. It is permitted but not required to specify the abstract modifier.

Subinterfaces and the extends Clause
If an extends clause is provided then the interface being declared extends each of the other named
interfaces and therefore implicitly includes the methods and constants (unless shadowed) of each of
the other named interfaces. Any class that implements the declared interface is also considered to
implement all the interfaces that this interface extends.

ExtendsInterfaces:
 extends TypeName
 ExtendsInterfaces , TypeName

Each TypeName in the extends clause of an interface declaration must name an interface.

It is a compile-time error for there to be a circularity that causes an interface to directly or indirectly
extend itself.

Note that there is no analogue of the class Object for interfaces; that is, while every class is an
extension of class Object, there is no single interface of which all interfaces are extensions.

Body of an Interface
The body of an interface is much like the body (§ Class Body) of an abstract class (§ Class
Modifiers).

InterfaceBody:
 { FieldDeclarations }

However, the body of an interface may not contain constructor declarations (§ Constructor Method
Declarations) or static initializers (§ Static Variable Initialization).

Variable Declarations in Interfaces
Every field variable in the body of an interface is implicitly static and final. It is permitted but not
required to specify the static modifier, the final modifier, or both static and final for such variables.
Every field variable in the body of an interface must have an initializer and the initialization
expression must be a constant expression (§ Constant Expression).

Every variable declaration in the body of a public interface is implicitly public. It is permitted but not
required to specify the public modifier for such methods.

A variable declaration in an interface body may not include any of the modifiers synchronized,
transient, or volatile.

Method Declarations in Interfaces
Every method declaration in the body of an interface is implicitly abstract. Its body must be
represented by a semicolon, not a block. It is permitted but not required to specify the abstract
modifier for such methods.

Every method declaration in the body of a public interface is implicitly public. It is permitted but not
required to specify the public modifier for such methods.

A method declaration in an interface body may not include any of the modifiers final, native, static, or
synchronized.

A class and interface Example
interface Storing {
 void freezeDry (Stream s);
 void reconstitute (Stream s);
}

class Image implements Storing {
 ...
 void freezeDry(Stream S)
 // JPEG compress image before storing
 ...
 }
 void reconstitute (Stream s) {
 // JPEG decompress image before reading
 ...
 }
}
class StorageManager {
 Stream stream;
 ...
 // Storing is the interface name
 void pickle (Storing obj) {
 obj . freezeDry (stream);
 }
}

The StorageManager class requires that the argument to pickle implement the Storing interface but
can make no other assumption about how obj is implemented.

Arrays
Java arrays are objects, are dynamically allocated, and may be assigned to variables of type Object.
All methods of class Object may be invoked on an array.

Java arrays are single-dimensional. An array is an object that contains a number of variables. (This
number may be zero.) These variables have no names; instead they are referenced using
nonnegative integer values. These variables are called the components of the array. If an array has n
components, we say n is the length of the array; the components of the array are referenced using
integers from 0 to n-1, inclusive.

All the components of an array have the same type, called the component type of the array. If the
component type of an array is T, then the type of the array itself is written T[].

There are no multi-dimensional arrays as such. However, the component type of an array may itself
be an array type. The subarrays themselves have components, of course, and so on. If, starting from
any array type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component type that is not an
array type; this is called the element type of the original array, and the components at this level of the
data structure are called the elements of the original array. Note that there is one situation in which
an element of an array can be an array: if the element type is Object, then some or all of the
elements may be arrays, because every array can be cast to class Object.)

Like all objects in Java, arrays must be explicitly allocated. However, there are two different ways to
allocate an array. The new operator may be used in the usual way to allocate a fresh array. In
addition, a special "array initializer" syntax may be used on the right-hand side of the = in a
declaration of an array variable.

Array Types
An array type is notated (§ Array Types) by writing the name of the element type followed by some
number of empty pairs of square brackets [].The number of bracket pairs indicates the depth of array
nesting.

Array types may be used in declarations and in casts.

Declarations of Array valued Variables
Declaring a variable of array type does not allocate an array object and therefore does not allocate
any space for array components. It creates only the variable itself, which can contain a reference to
an array. However, the initializer part of a declarator may allocate an array, a reference to which then
becomes the initial value of the variable.

Here are some examples of declarations of array variables that do not allocate an array:

int [] ai; // array of
integer

short [] [] as; // array of
array short

Object [] ao; // array of
object

otherao; // array of
object

short s, // scalar
short

as [], // array of
short

aas [] []; // array of
array of
short

Here are some examples of declarations of array variables that allocate array objects:

Exception ae [] = new
Exception [3];

Object aao [] [] = new
Exception [2] [3];

int [] factorial =
{1,1,2,6,24,120,720
,5040};

char ac [] = { 'n', 'o', 't', '
' , 'a', ' ', 'S', 't', 'r', 'i',
'n', 'g' };

String aas = {array", "of",
"String", };

Note that [] may appear as part of the type at the beginning of the declaration, or as part of the
declarator for a particular variable, or both, as in example:

byte [] rowvector, colvector, matrix [];

Programmers may prefer to avoid putting some brackets in the decalaration type and some in the
declarator as a matter of style.

Array Initialization
An array may be allocated by using an array initializer in place of an initialization expression in a
declarator. This is written as a pair of braces (" { }") enclosing a comma-separated list of expressions.
The length of the constructed array will equal the number of expressions. Each expression specifies
a value for one array component. Each expression must be assignment-compatible with the array's
component type. If the component type is itself an array type, then the expression specifying a
component may itself be an array initializer; that is, array initializers may be nested.

ArrayInitializer:
 { ElementInitializersopt , opt }
ElementInitializers:
 Element
 ElementInitializers , Element
Element:
 Expr
 ArrayInitializer

A redundant trailing comma may appear after the last expression in an array initializer.

Array Length
An array's length is not part of its type. As a consequence, over the course of time a single variable
of array type may contain references to arrays of different lengths.

Every array has a . length field, which is a final variable; it may be examined but may not be changed
by assignment. Once an array object is allocated, its length never changes. If it it desired to make an
array variable refer to an array of different length, it is necessary to allocate or otherwise identify
another array of the desired size and then assign a reference to that other array to the variable.

All array accesses are checked at run-time; an attempt to use an index that is less than zero or not
less than the length of the array causes an ArrayIndexOutOfBoundsException to be thrown (§Array
Access).

Array Indexing
Arrays may be indexed by int values (§ Array Access); short, byte, or char values may also be used
as they are subjected to unary arithmetic promotion (§ Unary Arithmetic Promotion) and become int
values. Arrays may not be indexed by long values.

Array Allocation and Reclamation
Array Use example:

/ *
 * Method to return an n-by-m array of bytes with a
 * given initial value.
 */
byte [] [] makeByteArray (int n, int m, byte initialvalue)
{
 byte [] [] newArray = new byte [n] [m]
 for (int i=O ; i < newArray.length ; i++)
 for (int j =O j < newArray [i] . length ; j ++)
 newArray [i] [j] = initialValue;
 return newArray;

Array use example:

/*
 * Method to return a triangular array of bytes with a
 * given initial value. Element [i] [j] exists only if j < i.
 */
byte [] [] makeTriangularByteArray (int n, byte initialValue)
}
 byte [] [] newArray = new byte [n] [];
 for (int i =O i < newArray.length ; i++)
 newArray [i] = new byte [i];
 for (int j =O ; j < newArray [i].length ; j++)
 newArray [i] [j] = initialValue;
 return newArray;
}

Array use example:
/ *
 * Method to return a triangular array of integers filled
 * with Pascal's triangle. Element [i] [j] exists only if j <= i
 * and equals i ! / (j! (i-j)!).
 */
int [] [] makePascalTriangle (int n)
{
 byte [] [] result = new byte [n] [];
 for (int i =O ; i < result.length ; i ++)
 result[i] = new byte [i+1];
 result[i] (O] = 1;
 for (int j=l ; j < i; j++)
 result [i] [j] = result [i -1][j-1] + resultf [i-1] [j] ;
 result [i] [i] = 1;
 return result;
}

Arrays versus Strings
An array of char is not a String. Note that a String does not have assignable components, whereas
the character components of an array of characters can be assigned to.

Neither Strings nor arrays of char are automaticallvy terminated by '\uOOOO' (the NUL character). In
this respect Java differs from C.

Blocks and Statements
Except as described, statements are executed in sequence. Statements are executed for their effect,
and do not have values.

Java requires that variables be clearly initialized before use. We (will soon) give, in this section and
in the next section on Expressions, the algorithm which a Java compiler is required to use to
determine if a variable has been clearly initialized. A compiler may not vary from this algorithm,
because that would affect what Java programs are legal.

Blocks
The body of a method and the body of a static initializer are both blocks, which are a sequence of
local variable declarations and statements.

Block:
 { LocalVariableDeclarationsAndStatements }
LocalVariableDeclarationsAndStatements:
 LocalVariableDeclarationOrStatement
 LocalVariableDeclarationsAndStatements LocalVariableDeclarationOrStatement
LocalVariableDeclarationOrStatement:
 LocalVariableDeclarationStatement
Statement

Local Variable Declarations
A local variable declaration statement introduces a new identifier into a block; it has the form:

LocalVariableDeclarationStatement:
 TypeSpecifier VariableDeclarators

The identifier is not allowed to already be declared as a local variable or label, or as a variable which
is a formal argument to a method or constructor.

If the identifier declared by this statement was previously declared as a field (variable or method) or
type name, then the other declaration is hidden for the remainder of the block, after which it resumes
its force. The keyword this can be used to access a hidden field x, in an expression of the form this .

The inltializations of the declared variables are done each time the local variable declaration
statement is executed. It is a compile-time error if a variable is used when the compiler cannot
determine whether the variable will be dynamically initialized before use, using the standard
algorithm.

Statements
Statements fall into several groups:

Statement:
 EmptyStatement
 LabeledStatement
 ExpressionStatement ;
 SelectionStatement
 IterationStatement
 JumpStatement
 SynchronizationStatement
 ExceptionStatements

Empty Statement
An empty statement does nothing.

EmptyStatement:
 ;

Labeled Statements
Statements may carry label prefixes.

LabeledStatement:
 Identifier : Statement
 case ConstantExpression : Statement
 default : Statement

The first form declares the identifier as the label of the statement, and has as its scope the curent
block. Labels used with the continue statement must be on iterations statements.

The identifier is not allowed to already be declared as a local variable or label, or as a variable which
is a formal argument to a method or constructor.

If the identifier declared by this statement was previously declared as a field (variable or method) or
type name, then the other declaration is hidden for the remainder of the block, after which it resumes
its force.

Statement labels can be used only in labeled break and continue statements within this block.

The case labels and default labels may occur only in switch statements (§ Selection Statements).

Expression Statements
Most statements are expression statements, which have one of the forms:

ExpressionStatement:
 Assignment ;
 Preincrement ;
 PreDecrement ;
 PostIncrement ;
 PostDecrement ;
 MethodCall ;
 Allocation Expression ;

All side effects from the expression are completed before the next statement is executed.

Unlike C and C++ Java restricts the forms of expressions which are valid statements to catch errors.
The programmer can assign the value of any other expression to a variable to make such an
expression into a statement.

It is legal for a result of a method which is not declared void to be ignored. Java forbids the
expression statement to begin with a cast.

Selection Statements
 Selection Statements
Selection statements choose one of several flows of control:

SelectionStatement:
 if (Expression) Statement
 if (Expression) Statement else Statement
 switch (Expression) Block

Selection Statements
 Selection Statements
 The if Statement
 The switch Statement
Selection statements choose one of several flows of control:

SelectionStatement:
 if (Expression) Statement
 if (Expression) Statement else Statement
 switch (Expression) Block

The if Statement
In both forms of the if statement, the expression, which must have a boolean type, is evaluated,
including all side effects. If it evaluates to true then the first substatement is executed. In the second
form the second substatement is executed if the expression evaluates to false. The else ambiguity is
resolved by connecting an else with the last encountered else-less if in the same block.

The switch Statement
The switch statement causes control to be transferred to one of several statements depending on the
value of an expression. The type of the expression must be char, byte, short or int.

The substatement controlled by a switch is a block. Any top-level statement within the block may be
labeled with one or more case labels, and at most one top-level statement may be labeled with a
default label.

The controlling expression and the case constants are converted to int.

No two of the (promoted) case constants associated with the same switch may have the same value;
this applies whether the case is on char or an integral type.

When the switch statement is executed, its expression is evaluated, including all side effects, and
compared with each case constant. If one of the case constants is equal to the value of the
expression, control passes to the statement of the matched case label. If no case matches, and there
is a default label, control passes to the labeled statement. If no case matches, and there is no
default, then none of the substatements of the switch is executed.

The case or default labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, a break or other jump statement is typically used.

Jump Statements
 Jump Statements
Jump statements transfer control unconditionally:

JumpStatement:
 break Identifieropt ;
 continue Identifieropt ;
 return Expressionopt ;
 throw Expression ;

In any case where a jump statement causes control to bypass a finally part of a try statement, the
non-local control transfer pauses while the finally part is executed, and continues if the finally part
finishes normally (§ The try Statement).

Jump Statements
 Jump Statements
 The break Statement
 The continue Statement
 The return Statement
 The throw Statement
Jump statements transfer control unconditionally:

JumpStatement:
 break Identifieropt ;
 continue Identifieropt ;
 return Expressionopt ;
 throw Expression ;

In any case where a jump statement causes control to bypass a finally part of a try statement, the
non-local control transfer pauses while the finally part is executed, and continues if the finally part
finishes normally (§ The try Statement).

The break Statement
An unlabeled break statement transfers control to the end of the enclosing iteration (for, do, while), or
switch statement. If an identifier is provided, it must be the label of an arbitrary enclosing statement.
Control passes to the statement following the terminated statement, after executing any required
finally clauses, provided the finally clauses all complete normally.

The continue Statement
The continue statement may occur only in an iteration statement and causes control to pass to the
loop-continuation point of an iteration statement, breaking out of the statement governed by the
iteration but not out of the iteration itself. If the optional identifier is provided, then it must be a label of
an enclosing iteration statement, otherwise, the nearest enclosing looping statement is continued.

If control passes any finally clauses they are executed before continuing at the continuation point,
and control ultimately reaches the continuation point only if all such finally clauses complete
normally.

More precisely, in each of the statements:

outer:
while (foo) {
 // ...
 //continue here
}

outer:
 do {
 // ...
 //continue here
) while (foo);

outer:
 for (; ;) {
 // ...
 //continue here
}

a continue not contained in an enclosing iteration statement continues at the continue here point. A
continue giving the label outer would continue at the continue here point (and specifically not fall in at
the top of the iteration as a goto statement would in C or C++.)

The return Statement
A method, constructor, or static initializer returns to its caller by the return statement. If this causes
control to pass any finally clauses they are executed before the return occurs, and the return
continues to operate only as long as all of the finally clauses complete normally.

A return statement with an expression can be used only in methods that are declared to return a
value, that is methods which are not declared void. If required, the expression is converted, as in an
assignment to a variable which has as its type the return type of the function.

A return statement without an expression can be used in methods that are declared to not have a
result type, constructors and static initializers.

The throw Statement
A throw statement signals a run-time exception. Its argument must be an object type, and is
conventionally a subclass of Exception.

Normal execution is suspended while a suitable exception handler is sought for the exception. Each
enclosing statement which is not a try is terminated, and any finally clauses that are passed by are
executed. The exception propagation continues until a catch clause is found whose formal argument
has a type which is a superclass of the type of the argument expression. Processing then continues
as described in § The try Statement.

Guarding Statements
 Guarding Statements
Guarding statements establish conditions or contexts during the execution of a substatement:

GuardingStatement:
 synchronized (Expression) Statement
 try Block Finally
 try Block Catches
 try Block Catches Finally
Catches:
 Catch
 Catches Catch
Catch:
 catch (Argument) Block
Finally:
 finally Block

Guarding Statements
 Guarding Statements
 The synchronized Statement
 The try Statement
Guarding statements establish conditions or contexts during the execution of a substatement:

GuardingStatement:
 synchronized (Expression) Statement
 try Block Finally
 try Block Catches
 try Block Catches Finally
Catches:
 Catch
 Catches Catch
Catch:
 catch (Argument) Block
Finally:
 finally Block

The synchronized Statement
A synchronized statement establishes a critical expression. The value of the expression must be a
reference to an object (which may be an array).

The synchronized statement acquires the (single) lock associated with the object, waits for the lock
to be free if necessary, executes the governed statement, and then releases the lock.

The try Statement
A try statement executes the block in the try part, which is the scope of the exception handlers
established by any catch clauses.

If an exception occurs during execution of the statement in the try part which is not handled by a
nested handier, then the exception will cause termination of the execution of the try part.

Any catch clauses associated with the try will then be examined. Each catch clause has a single
formal argument of class or interface type, and will handle any exception which can legally be
assigned to this argument. This allows subclasses of type Exception to define categories of
exceptions in a natural way.

Exception handler types are compared in order: the first catch clause supporting a legal assignment
accepts the exception, receiving the object which is associated with the exception in the actual
variable which is its argument. This variable has as its scope the block of the catch. When the catch
block completes execution, execution continues with the finally part, if any, or with the next statement
in order after the try

A finally clause is used to ensure that the block governed by finally is executed after the statement
governed by try and catch, no matter how control leaves the try or catch part.

After the finally code is executed, control transfers out of the try statement. Normally, the control
transfer destination is that determined bv the event which caused the try statement to be terminated:
fall-through, the execution of a break, continue, or return, or the propagation of an exception. But if
the finally code executes a jump statement causing another unconditional control transfer outside of
its block or causes another uncaught exception to be thrown, then the original jump statement is
abandoned, and the new unconditional control transfer or exception is processed.

Unreachable Statements
It is a compile-time error if a statement cannot be executed because it is unreachable. The precise
meaning of this remark will be explained in a future version of this document.

Value of an Expression
Expressions are used in Java to indicate variables and to compute values. The execution of an
expression produces one of three results:

· a value
· a variable (in C this would be called an lvalue)
· nothing (the expression is void)
An expression produces nothing if and only if it is a method call that invokes a method whose return
type is void. Such an expression can be used only as an expression statement, because every other
context in which an expression can appear requires the expression to produce a value or a variable.
An expression statement that is a method call may also call a method whose return type is not void;
the value returned by the method is quietly discarded.

An expression that produces a value may not appear as the left-hand operand of any assignment
operator (§ Assignment Operators) or as the operand of a ++ or --operator (§ Postfix Increment
Operator). These contexts require an expression that produces a variable.

All other contexts where an expression may appear require a value, but the expression may produce
either a variable or a value; if the expression produces a variable, then the value of that variable is
used, and we simply speak of the value of the expression.

The execution of an expression can also produce side effects, because expressions may contain
embedded method calls as well as embedded assignment, ++, and -- operators.

Each expression occurs in the declaration of some type which is being declared, either in its static
initializer, in a constructor declaration, or in the code for a method.

Type of an Expression
Every expression has a compile-time type. The rules for determining the type of an expression are
explained separately below for each kind of expression. The value of an expression will always be
compatible with the compile-time type of the expression, just as the value stored in a variable will
always be compatible with the compile-time type of the variable.

If the compile-time type of an expression is a classtype C, then the value of the expression will be
either null or a reference to an instance of some subclass R of C (which may be C itself). If the
compile-time type of an expression is an interface type I, then the value of the expression will be
either null or a reference to an instance of some class R that implements the interface I. If C is
Object, then the value of the expression may also be an array of some array type R. In any of these
cases, if value of the expression is not null then we say that R is the run-time type of the value. If the
compile-time type of an expression is a primitive type, then the run-time type of the value is the same
as the compile-time type of the expression.

Note that an expression whose compile-time type is a class type F that was declared final is
guaranteed to produce a value whose run-time type is F, because final types have no subclasses.

These are the only places in the Java language where the run-time type of a value affects the course
of execution in a manner that cannot be deduced from the compile-time type:

· In a method or constructor call (§Method Calls). The particular method is used for a call o.m (...)
is chosen based on the methods which are part of the class or interface which is the static type
of o. The run-time type of o participates because a subclass may override (§ Method Overriding)
a specific method already defined in a parent class so that this overriding method is called first;
this method may or may not choose to further call the original overridden m method.

· In a narrowing cast (§ Postfix Decrement Operator). The value of an expression may be cast to a
type that is narrower than the compile-time type of the expression; this requires a run-time check
that throws an error if the run-time type of the value is not compatible with the narrower type

· With instanceof (§ Relational Operators). An expression whose compile-time type is a class,
interface, or array type may be tested using instanceof to find out whether the run-time type of its
value is compatible with some narrower type.

· Assigning to an array component of reference type. Such an assignment may require a
narrowing conversion at run time and so may require a run-time check

· In a catch clause, where an exception is caught only if the run-time type of the exception is
instanceof the formal argument type (§ The try Statement).

Thus a Java run-time type error can occur only in these situations:

· In a narrowing cast, the value's run-time type is not compatible with the cast type.
· In an assignment to an array component of reference type, the run-time type of the value to be

assigned is not compatible with the array component type
· An exception is not caught

Evaluation Order
Java guarantees that the operands to operators appear to be evaluated from left-to-right.
Specifically:

· The left-hand operand of a binary operator appears to be fully executed before any part of the
right-hand operand is executed. For example, if the left-hand operand contains an assignment to
a variable and the right-hand operand contains a reference to that same variable, then the value
produced by the reference will reflect the fact that the assignment occurred first.

· In an array reference, the expression to the left of the brackets appears to be fully executed
before any part of the expression within the brackets is executed. For example, in the (admittedly
monstrous) expression a ((a=b) [3]], the expression a is fully executed before the expression
(a=b) [3]; this means that the original value of a is fetched and remembered while the expression
(a=b) [3] is executed. This old array is then subscripted by a value that is element 3 of another
array copied from b into a.

· In a method call for an object, there is an expression whose value is an object; this expression
appears to the left of the dot, method name, and left parenthesis of the method call. This
expression appears to be fully executed before any part of any argument expression within the
parentheses is executed.

· In a method call or allocation expression, there may be one or more argument expressions within
the parentheses, separated by commas. Each argument expression appears to be fully executed
before any part of any argument expression to its right.

· In an allocation expression, there may be one or more dimension expressions, each within
brackets. Each dimension expression appears to be fully executed before any part of any
dimension expression to its right.

It is not necesssarily recommended that Java code rely crucially on this specification; code is usually
clearer when each expression contains at most one side effect, as its outermost operation. These
rules are imposed principally to promote portability of Java prograrns, no matter how they are coded.

Java also guarantees that every operand of an operator appears to be fully executed before any part
of the operation itself is performed. In particular, the operands of an increment, decrement, or
compound assignment operator appear to have been fully executed before the compound
assignment operator fetches the value of the variable to be updated. For example, in the compound
assignment operation a+ = (a=3), the resulting value of a is guaranteed to be 6, because the
assignment of 3 to a occurs before the + = operation fetches a in order to add its right-hand operand
to it. Note that this example therefore behaves slightly differently from a=a+ (a=3), where the old
value of a--the value of the left-hand operand of the + operation---must be fetched and remembered
before the assignment of 3 to a occurs. Note also that both these examples have undefined behavior
in C, according to the ANSI/ISO standard.)

Java implementations therefore must respect the order of execution as indicated explicitly by
parentheses and implicitly by operator precedence. An implementation may not take advantage of
algebraic identities such as the associative law to rewrite expressions into a more convenient
computational order unless it can be proven that the replacement expression is equivalent in value
and in its observable side effects, even in the presence of multiple threads of execution, for all
possible computational values that might be involved. In the case of floating-point calculations, this
rule applies also for infinity and not-a-number (NaN) values. For example, ! (x<y) may not be
rewritten as x>=y, because these expressions have different values if either x or y is NaN. Note also
that floating-point calculations that appear to be mathematically associative are unlikely to be
computationally associative. Such computations must not be naively reordered. For example, it is not
correct for a Java compiler to rewrite 4.O*x*O .5 as 2. O*x; while roundoff happens not to be an issue
here, there are certain large values of x for which the first expression will produce infinity (because of
overflow) but the second expression will produce a finite result.

In contrast, integer addition and multiplication are provably associative in Java; for example a+b+c
will always produce the same answer whether evaluated as (a+b) +c or a+ (b+c); if the expression
b+c occurs nearby in the code, a smart compiler may be able to use this common subexpression.

Primary Expressions
Primary expressions include names, literals, expressions in parentheses, allocation expressions,
array references, field references, and method calls.

PrimaryExpression:
 Name
 NotjustName

NotjustName:
 AllocationExpression
 ComplexPrimary

ComplexPrimary:
 Literal
 (Expression)
 ArrayAccess
 FieldAccess
 MethodCall

Name:
 QualifiedName
 this
 super
 null

QualifiedName:
 Identifier
 QualifiedName Identifier

A name may be a simple identifier or a qualified identifier. When used as an expression, such a
name must be the name of a variable.

If a simple name refers to a local variable or method parameter, then if the variable is final, the result
of the expression is the value of the specified variable; but if the variable is not final, the result of the
expression is the variable itself. This distinction matters because it implies that only non-final
variables may appear as the left-hand operand of an assignment operator (§ Assignment Operators).
In either case, the compile-time type of the expression is the declared type of the variable.

If a simple name does not refer to a local variable or method parameter, it may indicate a field access
(§ Field Access through a Simple Name). A qualified name cannot refer to a local variable or method
parameter, but may indicate a field access (§ Field Access through a Qualified Name).

A literal (§ Literals) denotes either a primitive value or a reference to an object that is an instance of
class String.

A parenthesized expression is a primary expression that has the same value and compile-time type
as the contained expression.

Array Access
ArrayAccess:
 Name [Expression]
 ComplexPrimary [Expression] r

A primary expression followed by an index expression in square brackets is an array access. The
compile-time type of the primary expression must be an array type (call it T [], an array whose
components are of type T); its value will then be either null or a reference to an array. The index
expression undergoes unary arithmetic promotion (§Unary Arithmetic Promotion); the promoted type
must be int.

If, at run-time, the value of the primary expression is null, a NullPointerException is thrown.

If, at run-time, the value of the primary expression is not null, but the value of the index expression is
less than zero, or greater than or equal to the length of the array, an
ArrayIndexOutOfBoundsException is thrown.

The result of an array reference is a variable of type T, namely the variable within the array selected
by the value of the index expression. This resulting variable, which is a component of the array, is
never considered final, even if the array reference was obtained from a final variable.

Note that, for syntactic reasons, the primary expression in an array access cannot be an
unparenthesized allocation expression.

Field Access
Fields of an object, array, class, or interface may be accessed in several ways.

In all cases, if the field is final, the result of the field access is the value of the specified field; if the
field is not final, the result of the field access is a variable, namely the specified field itself. The
compile-time type of the result is the declared type of the field.

Method Calls
MethodCall:
 MethodAccess (ArgumentListopt)

MethodAccess:
 Name
 PrimaryExpression . Identifier

ArgumentList:
 Expression
 ArgumentList , Expression

A method call is a method access followed by parentheses that surround a possibly empty, comma-
separated list of expressions, called the arguments. A method access has the same form as a field
access but must refer to a field that is a method rather than a variable. Resolving a method name at
compile time is more complicated than resolving a field variable because of the possibility of method
overloading. Invoking a method at run time is also more complicated than accessing a field variable
because of the possibility of method overriding.

For a method call to be correct and unambiguous there must be a method definition at compile time
that is both applicable and most specific.

A method definition is applicable to a method call if all these requirements are satisfied::

· The declared name of the method is the same as the field name in the method call.
· The method definition is accessible from the method call by the rules of name resolution (§

Name Resolution).
· The number of parameters in the method definition equals the number of arguments in the

method call, and
· Each actual argument in the method call is assignable (§ Assignment Conversion) to the

corresponding parameter as declared in the method definition.
A method m, declared in class T with n parameters having types T 1, ..., Tn is more specific than
another method, also named m but declared in class U with n parameters having types U1, ..., Un, if
and only if T is assignable to U and Tj is assignable to Uj for all j from 1 to n. This implies, by the way,
that if we declare variables

T t; T1 t1; ... Tn tn;

then for any values of these variables, the code

((U) t).m(t, ... , tn)

could invoke the second method without type errors. Of course, within the body of the first method,
this has the typeT and its parameters have types T1, ... , Tn. This leads to the simple and intuitive
notion that a method defined in class T is more specific than a method of the same name defined in
class U if it can call the second method simply by casting this to type U and passing all its
parameters as arguments.

At compile time, there is some set of methods applicable to a method call. If this set is empty (there
is no applicable method), a compile-time error results. Otherwise, there must be a single method
definition in the set that is more specific than all others; if not, the method call is considered
ambiguous, and a compile-time error results.

If there is a single most specific method definition, it is called the compile-time definition for the

method call; its name and the compile-time types of the parameters in the definition constitute the
signature for the method caIl. The declared return type for this method definition is used as the
compile-time type of the method call.

At run time, the method invocation proceeds as follows. If the method access requires computing a
reference value (which may be an implicit occurrence of this), that subexpression is executed first; if
the method is not static, the resulting value is called the target object and will be available within the
called method as the value of this and of super. Then the argument expressions are evaluated in
order, from left to right, and their values are assigned to the parameters of the method (in a new
activation frame). Finally, a method definition is located and actually invoked.

If the method is static, then it cannot be overridden (because every static method is implicitly final).
The method definition that was determined to be most specific at compile time is the definition
invoked at run time.

If the method is private, then it cannot be overridden. The method definition that was determined to
be most specific at compile time is the definition invoked at run time.

If the MethodAccess appearing before the parenthesized argument list is of exactly the form super
MethodName, this is considered a request to run the method named MethodName that is visible in
the narnespace of the immediate superclass of the class within whose body the method call appears.
Any overriding methods are bypassed; the method definition that was determined to be most specific
at compile time is the definition invoked at run time. (This is the one of the two situations in the Java
language where super is not equivalent to a cast of this to the type of its immediate superclass; (§
The Body of a Constructor).

If the method is neither static nor private and the MethodAccess is not of the form super
MethodName, then dynamic method lookup occurs. The lookup process starts from the class that is
the run-time type of the target object and from there works its way up the chain of superdasses (if the
target object is an array, the lookup process starts, and ends, at the class Object). As soon as a class
is found with a method definition that matches the signature for the method call determined at
compile time, that method definition is invoked. The lookup process must succeed, because the
definition located at compile time will be found if no overriding definition is found in some subclass.

The result of a method call is the value returned by the invoked method. If the declared return type of
the method is void, then there is no result; a method call to such a method may appear only as a top-
level expression (as an expression statement or in the header of a for statement).

Allocation Expressions
 Allocation Expressions
The new operator attempts to create an object or array of a specified type:

Allocation Expression:
 new TypeName (ArgumentList opt)
 new TypeName DimExprs Dimsopt

TypeName:
 TypeKeyword
 QualifiedName

TypeKeyword: one of
 boolean char byte short int float long double

ArgumentList:
 Expression
 ArgumentList , Expression

DimExprs:
 DimExpr
 DimExprs DimExpr

DimExpr:
 [Expression]

Dims:
 []
 Dims []

A new operator will raise an OutOfMerroryException if there is insufficient memory available.

Allocation Expressions
 Allocation Expressions
 Allocating New Objects
 Allocating New Arrays
The new operator attempts to create an object or array of a specified type:

Allocation Expression:
 new TypeName (ArgumentList opt)
 new TypeName DimExprs Dimsopt

TypeName:
 TypeKeyword
 QualifiedName

TypeKeyword: one of
 boolean char byte short int float long double

ArgumentList:
 Expression
 ArgumentList , Expression

DimExprs:
 DimExpr
 DimExprs DimExpr

DimExpr:
 [Expression]

Dims:
 []
 Dims []

A new operator will raise an OutOfMerroryException if there is insufficient memory available.

Allocating New Objects
In the first form of allocation expression, the TypeName must name a class type that is not abstract.
This class type is the compile-time type of the allocation expression.

The types of the arguments in the argument list, if any, are used to match against all the constructor
methods, declared in the class type or any of its superclasses, using the matching rules for method
calls (§Method Calls). As in method calls, a compile-time method matching error results if there is not
a single constructor that is both applicable and most specific.

The value of the first form of new is a newly created object of the specified class type that has been
initialized by first initializing every instance variable of the object to its standard default value
(§Standard Default Values) and then invoking the constructor method for that object on the
arguments.

Allocating New Arrays
The second form of new allocates a new array whose elements are of the type specified by the
TypeName; in this case the TypeName may name any type, even an abstract type or primitive type.
The compile-time type of the allocation expression is an array type that can be described by deleting
the new keyword and every DimExpr expression from the allocation expression; for example, the
compile-time type of the allocation expression

new double[3] [3] []

is

double [] [] []

The expression in each DimExpr undergoes unary arithmetic promotion (§ Unary Arithmetic
Promotion); the promoted type must be int. If, at run-time, the value of any DimExpr expression is
less than zero, ArrayNegativeSizeException is thrown.

If a single DimExpr appears, a single-dimensional array is allocated of the specified length. Each
component of the array is initialized to its standard default value (§ Standard Default Values).

Multidimensional arrays are implemented as arrays of arrays. If A is an N-dimensional array whose
elements are of type T, then A [i] is a reference to an (N-1)-dimensional array whose elements are of
type T.

If an array allocation expression contains N DimExpr expressions, then it effectively executes a set of
nested loops of depth N-1 to allocate the implied arrays of arrays. For example, the allocation:

float [] [] matrix = new float [3] [3];

is roughly equivalent to:

float [] [] matrix = new float [3] [];
for (int i = 0; i < matrix.length; ++i)
 matrix [i] = new float [3];

And

String [] [] [] [] [] fivedims = new String [6] [8] [10] [12] [];

 is equivalent to:

String [] [] [] [] [] fivedims new String [6] [] [] [] [] ;
for (int d1 = 0; d1 < fivedims.length; d1++) {
 fivedims [d1] = new String [8] [] [] [];
 for (d2 = 0; d2 < fivedims [d1].length; d2++) {
 fivedims [d1] [d2] = new String [10] [] [];
 for (d3 = 0; d3 < fivedims [d1] [d2].length; d3++) {
 fivedims [d1] [d2] [s3] = new String [12] [];
 }
 }
}

leaving the fifth dimension, which would be arrays containing the actual references to String objects,
initialized only to null.

A multidimensional array need not have the same length arrays at each level; thus a triangular matrix
may be allocated by:

float triang [] [] = new float [lOO] [];
for (int i = 0; i < triang.length; i++)
 triang [i] = new float [i+1];

There is, however, no way to get this effect with a single allocation expression.

Postfix Expressions
PostfixExpression:
 PrimaryExpression
 PostIncrement
 PostDecrement

PostIncrement:
 PrimaryExpression ++

PostDecrement:
 PrimaryExpression - -

Unary Operators
Expressions with unary operators group right-to-left:

UnaryExpression:
 Prelncrement
 PreDecrement
 '+' UnaryExpression
 '-' UnaryExpression
UnaryExpressionNotPlusMinus

Prelncrement:
 ++ PrimaryExpression

PreDecrement:
 -- PrimaryExpression

UnaryExpressionNotPlusMinus:
 PostfixExpression
 '~' UnaryExpression
 '!" UnaryExpression
 CastExpression

CastExpression:
 (TypeKeyword) UnaryExpr
 (TypeExpression) UnaryExpressionNotPlusMinus

The grammar is a bit more complicated than one might expect in order to avoid syntactic problems
with expressions such as (p) -q and (p) --q.

In the case of (p) - q it is not evident whether this is a binary subtraction of q from p or a cast of a
unary negation of q. It depends on whether or not p names a type or a variable.
Because the Java built-in unary negation operation can return only values of primitive type, and
because values of primitive type can be cast only to other values of primitve type, the java language
treats p)-q as a cast of a unary negation if and only if p is the name of a primitive type. This permits
such familiar constructions as (short) - 3 without requiring additional parentheses.

As for (p) --q, the difficulty for a simple grammar is that it is not clear whether (p) is a cast operator or
an expression without looking two tokens to the right, to the token after the --operator. Because most
automatic parser generators support only one-token lookahead, the Java language forbids this
construction. One can always write (P) (--q) instead.

Multiplicative Operators
The so-called "multiplicative operators" ~, /, and % have the same precedence and are syntactically
left-associative (they group left-to-right).

MultiplicativeExpression:
 UnaryExpression
 MultiplicativeExpression * UnaryExpression
 MultiplicativeExpression / UnaryExpression
 MultiplicativeExpression % UnaryExpression

Each operand of the multiplicative operators must be a value of primitive arithmetic type. Binary
arithmetic promotion is performed on the operands (§ Binary Arithmetic Promotion); the compile-time
type of the multiplicative expression is the promoted type of the operands. If this promoted type is int
or long, then integer arithmetic is performed; if this promoted type is float or double, then floating-
point arithmetic is performed.

Additive Operators
The so-called "additive operators" + and - have the same precedence and are syntactically left-
associative (they group left-to-right).

AdditiveExpression:
 MultiplicativeExpression
 AdditiveExpression + MultiplicativeExpression
 AdditiveExpression - MultiplicativeExpression

If either operand, or both, of a + operator has type String, the operation is string concatenation if
exactly one operand is of type String, the other is converted to type String before the concatenation
is performed.

Otherwise, each operand of the additive operators must be a value of primitive arithmetic type.
Binary arithmetic promotion is performed on the operands (§ Binary Arithmetic Promotion); the
compile-time type of the additive expression is the promoted type of the operands. If this promoted
type is int or long, then integer arithmetic is performed; if this promoted type is float or double, then
floating-point arithmetic is performed.

Relational Operators
The relational operators are syntactically left-associative (they group left-to-right), but this fact is not
useful; for example, a<b<c parses as (a<b) <c, which is always a compile-time error, because the
type of a<b is always boolean and < is not an operator on boolean values.

RelationalExpression:
 ShiftExpression
 RelationalExpression < ShiftExpression
 RelationalExpression > ShiflExpression
 RelationalExpression <= ShiftExpression
 RelationalExpression >= ShiftExpression
 RelationalExpression instanceof TypeSpecifier Dimsopt

Equality Operators
The relational operators are syntactically left-associative (they group left-to-right), but this fact is only
slightly useful; for example, a==b==c parses as (a==b) ==c, and because the type of a==b is always
boolean, c must therefore be of type boolean.

EqualityExpression:
 RelationalExpression
 EqualityExpression == RelationalExpression
 EqualityExpression ! = RelationalExpression

The == (equal to) and the != (not equal to) operators are analogous to the relational operators except
for their lower precedence. (Thus a<b==c<d is true whenever a<b and c<d have the same truth-
value.)

The equality operators may be used to compare two operands of arithmetic type, or two operands of
boolean type, or two operands of reference type. In all cases, a! =b has the same result as ! (a==b).

Bitwise and Logical Operators
The bitwise and logical operators include the AND operator &, exclusive OR operator A, and inclusive
OR operator I.These operators have different precedence, with & having the highest precedence and
I the lowest precedence. Each operator is syntactically left-associative (each groups left-to-right).
Each operator is both commutative and associative.

AndExpression:
 EqualityExpression
 AndExpression & EqualityExpression
ExclusiveOrExprrssion:
 AndExpression
 ExclusiveOrExpression ^ AndExpression
InclusiveOrExpression:
 ExclusiveOr
InclusiveOrExpression I ExcIusiveOrExpression

The equality operators may be used to combine two operands of integral type or two operands of
boolean type.

Conditional And Operator
The && operator is syntactically left-associative (it groups left-to-right). It is associative with respect
to both side effects and result value. It is commutative with respect to result value but not with
respect to whether side effects in its operand expressions will occur.

ConditionalAndExpression:
 InclusiveOrExpression
 ConditionalAndExpression && InclusiveOrExpression

Each operand of && must be of type boolean. The compile-time type of the result is boolean. The
left-hand operand expression is executed first; if its value is false, the value of the conditional-and
expression is false and the right-hand operand expression is not executed. If the value of the left-
hand operand is true, then the right-hand expression is executed and its value becomes the value of
the conditional-and expression. Thus && computes the same result as & on boolean operands; it
differs only in that the right-hand operand expression is executed conditionally rather than always.

Conditional Or Operator
The operator is syntactically left-associative (it groups left-to-right). It is associative with respect to
both side effects and result value. It is commutative with respect to result value but not with respect
to whether side effects in its operand expressions will occur.

ConditionalOrExpression:
 ConditionalAndExpression
 ConditionalOrExpression I I ConditionalAndExpression

Each operand of II must be of type boolean. The compile-time type of the result is boolean. The left-
hand operand expression is executed first; if its value is true, the value of the conditional-or
expression is true and the right-hand operand expression is not executed. If the value of the left-hand
operand is false, then the right-hand expression is executed and its value becomes the value of the
conditional-or expression. Thus computes the same result as on boolean operands; it differs only in
that the right-hand operand expression is executed conditionally rather than always.

Assignment Operator
There are many assignment operators; all are syntactically right-associative (they group right-to-left).
Thus a=b=c means a (b=c), which assigns the value of c to b and then assigns the value of b to a.

AssignmentExpression:
 ConditionalExpression
 Assignment

Assignment:
 UnaryExpression AssignmentOperator AssignmentExpression

AssignmentOperator: one of
= *= /= += -= <<= >>= >>>= &= ^= I=

The first operand of an assignment operator must be a variable, which may be a named variable
(such as a local variable or a field variable) or a computed variable (such as an array component).
The compile-time type of the assignment expression is the type of the variable. The result of the
assignment expression is the value of the variable after the assignment has occurred (but this result
is not itself a variable - in this respect the Java language is like C but unlike C++).

Note that it is not possible to assign to a variable that has been declared final, because mentioning
the name of the variable, on the left-hand side of an assignment operator or anywhere else,
produces its value rather than the variable itself (§ Primary Expressions, § Field Access).

Expression
An expression is an assignment-expression:

Expression:
 AssignmentExpression

(Unlike C and C++, the Java language has no comma operator.)

Constant Expression
A constant expression is an expression of primitive type that is formed from literals of primitive type;
final variables whose initialization values are constant expressions; casts to primitive types; the unary
operators +, -, -, and !; the binary operators ~, /, %, +1-I <~ <=, >, >=, ==, !=, ~, A, , &&, and I I; and
the ternary conditional operator? :.

+-!~

Constant expressions are used in interface declarations and case labels in switch statements.

Unassigned Variables
It is a compile-time error if a variable might be referenced before it has definitely been assigned or
initialized. The precise meaning of this remark will be explained in a future version of this document.

Addition and Subtraction Operators for Arithmetic Types80
The binary + operator performs addition when applied to two operands of arithmetic type, producing
the sum of its operands. Addition is a commutative operation. Integer addition is associative, but
floating-point addition is not always associative.

If an integer addition overflows, then the result is the low-order bits of the mathematical sum as
represented in some sufficiently large two's-complement format. If overflow occurs, then the sign of
the result will not be the same as the sign of the mathematical sum of the two operand values.

The result of a floating-point addition is governed by the rules of IEEE arithmetic

· If either operand is NaN, the result is NaN.
· The sum of two infinities of opposite sign is NaN.
· The sum of two infinities of the same sign is the infinity of that sign.
· The sum of an infjnity and a finite value is equal to the infinite operand.
· The sum of two zeros of opposite sign is positive zero.
· The sum of two zeros of the same sign is the zero of that sign.
· The sum of a zero and a nonzero finite value is equal to the nonzero operand
· The sum of two nonzero finite values of the same magnitude and opposite sign is positive zero.
· In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the

operands have the saem sign or have different magnitudes, the sum is computed and rounded to
the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is too
large to represent, we say the operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent, we say the operation underflows; the result is
then a zero of appropriate sign. Note that the Java language requires support of gradual
underfiow as defined by IEEE 754.

The binary - operator performs subtraction when applied to two operands of arithmetic type,
producing the difference of its operands; the left-hand operand is the minuend and the right-hand
operand is the subtrahend. For both integer and floating-point subtraction, it is always the case that
a-b produces the same result as 8+ (-b). Note, however, that for floating-point operands, subtraction
from zero is not the same as negation, because if x is +0.0, then 0. 0-x equals +0.0, but -x equals -
0.0. For integer values, subtraction from zero is the same as negation.)

Despite the fact that overflow, underfiow, or loss of precision may occur, execution of an arithmetic
additive operator never throws a run-time exception.

Bitwise Complement Operator
The value of the operand of the unary - operator must be a primitive value of an integral type. The
operand undergoes unary arithmetic promotion. The compile-time type of a unary bitwise-
complement expression is the promoted type of the operand. The result is the bitwise complement of
the promoted value of the operand. Note that for all integer values x,-x equals (-x) -1.

Boolean Equality Operators
If one operand of an equality operator is a value of type boolean, the other operand must also be a
value of type boolean. The compile-time type of the equality expression is boolean. The boolean
equality operators are commutative and associative.

The result of == is true if the operands are both true or both false; otherwise the result is false.

The result of != is false if the operands are both true or both false; otherwise the result is true. (Thus
= behaves the same as A (§ Boolean Logical Operators) when applied to boolean operands.)

Boolean Logical Operators
If one operand of a &, A, or operator is of type boolean, the other operand must also be of type
boolean. The compile-time type of the entire expression is then boolean.

For &, the result is true if both operand values are true; otherwise the result is false.

For A, the result is true if the operand values are different; otherwise the result is false.

For , the result is false if both operand values are false; otherwise the result is true.

Casts
A unary expression that does not begin with +, -, ++, or -- and that is preceded by a cast operator
(parentheses enclosing the name of a type) is called a cast, and causes conversion of the value of
the expresion to the named type. The compile-time type of the cast expression is the type named in
the cast operator. The value of the cast expression is the value of the unary expression after
conversion to the specified type.

Not all casts are permitted by the Java language; (see Casting Conversion). Some casts result in an
error at compile time; for example, it is not permitted to cast a primitive value to a reference type.
Some casts can be proven at compile time always to be correct at run time; for example, it is always
correct to convert a value of a class type to the type of its superclass. Yet other casts cannot be
proven always correct or always incorrect at compile time; such casts require a test at run time.

Compilation Units
Each package consists of a number of compilation units.

 Compilation Unit:
 PackageStatementopt ImportStatementsopt TypeDeclarationsopt

 PackageStatement:
 package PackageName ;

 TypeDeclarations:
 TypeDeclaration
 TypeDeclarations TypeDeclaration

 TypeDeclaration:
 ClassDeclaration
 InterfaceDeclaration

If a compilation unit has no package statement, the unit is placed in a default package, which has no
name. This is used on many systems to easily write fragments of Java code in the current directory
in the file system.

A compilation unit declares zero or more types, at most one of which is declared public. This
restriction makes it easy for the compiler and runtime system to find a named class within a package:
if a type is public, its source code for its type bar would typically be found in a file bar. java, and the
object code for the Java Virtual Machine in the file bar. class.

Compound Assignment Operators
All compound assignment operators require both operands to be of primitive type.

An expression of the form of the form El op= E2 is equivalent to El = El op (E2) except that El is
evaluated only once.

Conditional Operator
The conditional operator is syntactically right-associative (they group right-to-left) so that a?b:c?d:e?
f:g means the same as a?b: (c?d: (e?f:g)).

ConditionalExpression:
 ConditionalOrExpression
 ConditionalOrExpression ? Expression : ConditionalExpression

The conditional operator has three operand expressions; ? appears between the first and second
expressions, and : appears between the second and third expresssions. The first expression must be
of type boolean. The compile-time types of the second and third expressions must both be primitive
arithmetic types, or must both be boolean, or must both be reference types. (It is not permitted for
either the second or the third operand expression to have type void).

· If the second and third operands have arithmetic type, then there are several cases:
· If the operands have the same type, then that is the compile-time type of the conditional

expression.
· If one of the operands is of type byte and the other type short, then the compile-time type of the

conditional expression is short. (Here the Java language differs from C and C++.)
· If one of the operands is of type T where T is byte, short, or char, and the other operand is an

integer constant expression whose value is representable in type T, then the compile-time type of
the conditional expression is T. (Here the Java language differs from C and C++.)

· Otherwise, binary arithmetic promotion (§ Binary Arithmetic Promotion) is applied to their types to
determine a common promoted type, which is the compile-time type of the conditional
expression.

· If the second and third operands are of type boolean, then the compile-time type of the
conditional expression is boolean.

· If the second and third operands are both null, then the result of the conditional expression is
null.

· If one of the second and third operands is null and the type of the other is a
reference type, then the compile-time type of the conditional expression is that reference type.

· If the compile-time types of the second and third operands are (possibly different) reference
types, then it must be possible to convert one of the types to the other type (call this type T) by
assignment conversion (§ Assignment Conversion); the compile-time type of the conditional
expression is then T. It is a compile-time error if neither type can be assigned to the other type.

At run time, for each execution of the conditional expression, the first operand expression is
executed first; its value is then used to choose one of the second and third operand expressions for
execution.

· If the value of the first operand is true, the second operand expression is chosen.
· If the value of the first operand is false, the third operand expression is chosen.
The chosen operand expression is then executed and the resulting value is converted to the compile-
time type of the conditional expression as determined by the rules stated above. The operand
expression not chosen is not executed for that particular execution of the conditional expression.

Conversions
In Java, there are four contexts for conversion: casting, assignment, method call, and arithmetic
promotion. Casting is the most general context; if a conversion is permitted at all within Java, it can
be achieved by casting. Assignment and method call allow only certain conversions; however,
assignment and method call allow the same subset of the possible conversions, so it is convenient to
speak of "assignment conversion" with the understanding that it applies also to method calls.

Arithmetic promotion is not a general feature of Java, but is a property of the specific definitions of
the built-in arithmetic operations; there are two kinds of arithmetic promotion: unary arithmetic
promotion and binary arithmetic promotion. (The analogous conversions in C are called "the usual
unary conversions" and "the usual binary conversions".) Please note that not all binary operators
perform the binary arithmetic promotion.

Conversions never convert from a primitive value to a reference value or from a reference value to a
primitive value.

Division Operator
The binary I/operator performs division, producing the quotient of its operands. The left-hand
operand is the dividend and the right-hand operand is the divisor.

Integer division rounds toward 0; that is, the quotient produced for integer operands n and d is an
integer value q that is negative if and only if exactly one of n and d is negative and whose magnitude
is as large as possible while satisfying Id · qI InI . There is one special case that does not satisfy
this rule: if the dividend is the negative integer of largest possible magnitude for its type, and the
divisor is -1, then integer overflow occurs and the result is equal to the dividend; despite the overflow,
no exception is thrown in this case.

On the other hand, if the value of the divisor in an integer division is 0, then an ArithmeticException is
thrown.

The result of a floating-point division is governed by the rules of IEEE arithmetic:

· If either operand is NaN, the result is NaN.
· If neither operand is NaN, the sign of the result is positive if both operands have the same sign,

negative if the operands have different signs.
· Division of an infinity by an infinity results in NaN.
· Division of an infinity by a finite value results in a signed infinity, with the sign producing rule just

given.
· Division of a finite value by an infinity results in a signed zero, with the sign producing rule just

given.
· Division of a zero by a zero results in NaN; division of zero by any other finite value by a zero

results in a signed zero, with the sign producing rule just given.
· Division of a non-zero finite value by a zero results in a signed infinity, with the sign producing

rule just given.
· In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is

computed and rounded to the nearest representable value using IEEE 754 round to the nearest
mode. If the magnitude is too large to represent, we say the operation overflows; the result is
then an infinitv of appropriate sign. If the magnitude is too small to represent, we say the
operation underfiows; the result is then a zero of apptopriate sign. Note that the Java language
requires support of gradual underfiow as defined by IEEE 754.

Despite the fact that overflow, underfiow, division by zero, or loss of precision may occur, execution
of a floating-point division operator / never throws a run-time exception.

Field Access through a Qualified Name
If a primary expression is a qualified name of the form

TypeName . Identifier

where the TypeName is itself a simple or qualified name that names a class or interface, then it the
Identifier is resolved as a field variable (§ Name Resolution) within the specified class or interface.

If the field is static, the field access refers to a field associated with the class or interface whose
definition contains the declaration of the field. If the field is not static, the field access must occur
within the definition of a method that is not static, and the indicated tvpe must be the class in whose
body the field access appears, or one of its superclasses; the field access refers to a field within the
current object; in this case, the qualified name TypeName . Identifier is treated as if it had been
written ((TypeName) this) . Identifier.

Field Access through a Simple Name
If a primary expression is an identifier that does not name a local variable, then it is resolved as a
field variable (§ Name Resolution) within the class whose definition contains the primary expression.
In effect, a simple name xxx is treated as if it has been written this. xxx.

If the field is static, the field access refers to a field associated with the class or interface whose
definition contains the declaration of the field. If the field is not static, the field access must occur
within the definition of a method that is not static, and it refers to a field within the current object (as
declared in the class whose definition contains the primary expression or one of its superclasses).

Field Access through an Object or Array Reference
FieldAccess:
 PrimaryExpression . Identifier

A primary expression followed by a dot followed by an identifier indicates field access.

The compile-time type of the primary expression must be a reference type T. The identifier is
resolved as a field variable (§ Name Resolution) within type T, and must be the name of a field
variable of the class, interface, or array type, or a compile-time error results. (Note that an array type
has exactly one named field variable: length (§ Array Length).)

If the field is static, the field access refers to a field variable associated with the class or interface
whose definition contains the declaration of the field. If the field is not static, the field access must
occur within the definition of a method that is not static, and it refers to a field variable within the
current object (as declared in some class that is necessarily T or one of its superclasses).

Integer Bitwise Operators
If one operand of a &, A, or I operator is a value of primitive integral type, the other operand must
also be a value of (possibly some other) primitive integral type. Binary arithmetic promotion is
performed on the operands (§ Binary Arithmetic Promotion); the compile-time type of the entire
expression the promoted type of the operands.

If the operator is &, the result is the bitwise AND function of the operands.

If the operator is A, the result is the bitwise exclusive OR function of the operands.

If the operator is , the result is the bitwise inclusive OR function of the operands.

Iteration Statements
 Iteration Statements
Iteration statements specify looping:

Iteration Statements
 Iteration Statements
 The while Statement
 The do Statement
 The for Statement
Iteration statements specify looping:

The while Statement
In the while statement the substatement is executed repeatedly until the value of the expression,
which must be of type boolean, becomes false. The test, including all side effect from evaluation of
the expression, takes place before each execution of the substatement. The substatement may be
executed zero times.

The do Statement
In the do statement the substatement is executed repeatedly until the value of the expression, which
must be of type boolean, becomes false. The test, including all side effect from evaluation of the
expression, takes place after each execution of the substatement. The substatement is executed at
least once.

The for Statement
The for statement

for (ForInit Expressionopt ; ForIncropt) Statement

is equivalent to

Forlnit
while (Expressionopt,) {
 Statement
 Forlncr ;
)

except that a continue in Statement will execute Forlncr before re-evaluating Expression. Thus the
first statement specifies initialization for the loop; the first expression specifies a test, made before
each iteration, such that the loop is exited when the expression becomes false; the second
expression often specifies incrementing that is done after each iteration.

Either or both of the expressions may be omitted. A missing Expression makes the implied while
equivalent to while (true).

Logical Complement Operator
The value of the operand of the ! operator must be a primitive value of type boolean. The result is a
value of type boolean. The result is true if the operand value is false and false if the operand value is
true.

Multiplication Operator
The binary * operator performs multiplication, producing the product of its operands. Multiplication is
a commutative operation. Integer multiplacation is associative, but floating-point multiplication is not
always associative.

If an integer multiplication overflows, then the result is the low-order bits of the mathematical product
as represented in some sufficiently large two's-complement format. If overflow occurs, then the sign
of the result may not be the same as the sign of the mathematical product of the two operand values.

The result of a floating-point multiplication is governed by the rules of IEEE arithmetic:

· If either operand is NaN, the result is NaN.
· If neither operand is NaN, the sign of the result is positive if both operands have the same sign,

negative if the operands have different signs.
· Multiplication of an infinity by a zero results in NAN.
· Multiplication of an inftnity by a finite value results in a signed infnity, with the sign producing rule

just given.
· In the remaining cases, where neither an infinity or NaN is involved, the product is computed and

rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, we say the operation overflows; the result is then an infinity
of appropriate sign. If the magnitude is too small to represent, we say the operation underflows;
the result is then a zero of appropriate sign. Note that the Java language requires support of
gradual underflow as defined by IEEE 754.

Despite the fact that overflow, underflow, or loss of precision may occur, execution of a multiplication
operator * never throws a run-time exception.

null
The keyword null denotes a privileged polymorphic value representing the absence of a reference.
Its compile-time type is, in effect, a subtype of every reference type.

Numerical Comparison Operators
Each operand of a numerical comparison operator must be a value of primitive arithmetic type.
Binary arithmetic promotion is performed on the operands (§ Binary Arithmetic Promotion); the
compile-time type of the comparison expression is boolean. If the promoted type of the operands is
int or long, then signed integer comparison is performed; if this promoted type is float or double, then
floating-point comparison is performed.

Floating-point comparison is performed in accordance with IEEE 754:

· If either operand is NaN, the result is false.
· All values other than NaN are ordered, with negative infinity less than all finite values, and

positive infinity greater than all finite values.
· Positive zero and negative zero are considered equal. Therefore -0.0<0 - 0 is false, for example,

but -0. 0<=0 .0 is true.
Subject to these considerations for floating-point numbers, the following rules then hold for integer
operands or for floating-point operands other than NaN:

· The value produced by the <operator for is true if the value of the left-hand operand is less than
the value of the right-hand operand, and otherwise is false.

· The value produced by the <= operator is true if the value of the left-hand operand is less than or
equal to the value of the right-hand operand, and otherwise is false.

· The value produced by the > operator is true if the value of the left-hand operand is greater than
the value of the right-hand operand, and otherwise is false.

· The value produced by the >= operator is true if the value of the left-hand operand is greater
than or equal to the value of the right-hand operand, and otherwise is false.

Numerical Equality Operators
If one operand of an equality operator is a value of primitive arithmetic type, the other operand must
also be a value of (possibly some other) primitive arithmetic type. Binary arithmetic promotion is
performed on the operands (§ Binary Arithmetic Promotion); the compile-time type of the equality
expression is boolean. If the promoted type of the operands is int or long, then an integer equality
test is performed; if this promoted type is float or double, then a floating-point equality test is
performed. The numeric equality operators are commutative.

Floating-point equality testing is performed in accordance with IEEE 754:

· If either operand is NaN, the result of == is false but the result of ! = is true. (Indeed, the test x!
=x is true if and only if the value of x is NaN.)

· Positive zero and negative zero are considered equal. Therefore -0. 0==0 .0 is true, for example.
· Otherwise, two distinct floating-point values are considered unequal. In particular, There is one

value representing positive infinity and one value representing negative infity; each compares
equal only to itself, and each compares unequal to all other values.

Subject to these considerations for floating-point numbers, the following rules then hold for integer
operands or for floating-point operands other than NaN:

· The value produced by the == operator is true if the value of the left-hand operand is equal to the
value of the right-hand operand, and otherwise is false.

· The value produced by the = operator is true if the value of the left-hand operand is not equal to
the value of the right-hand operand, and otherwise is false

All other cases, including any equality comparisons involving boolean variables or values, result in
compile-time errors.

Object Equality Operators
If one operand of an equality operator is a value of a reference type, the other operand must also be
a value of a reference type. The compile-time type of the equality expression is boolean. The object
equality operators are commutative.

It is a compile-time error if it is impossible to convert the compile-time type of one operand to the
compile-time type of the other by a casting conversion (§ Casting Conversion). (The run-time values
of the two operands would necessarily be unequal.)

The result of == is true if the operands are both null or both refer to the exact same object or array;
otherwise the result is false.

The result of != is false if the operands are both null or both refer to the exact same object or array;
otherwise the result is true.

Note that while == may be used to compare references of type String, the equality test determines
whether or not the two operands refer to the same exact String object. The result will be false if the
operands are distinct String objects, even if they contain the same sequence of characters. The
contents of two strings s and t can be tested for equality by the method call s.equals (t).

Postfix Decrement Operator
A primary expression followed by a -- operator is a postfix decrement expression. The primary
expression must denote a variable of an arithmetic type. The compile-time type of the postfix
decrement expression is the type of the variable. The value 1, converted to the type of the variable,
is subtracted from the value of the variable and stored back into the variable. The value of the postfix
decrement expression is the value of the variable before the new value is stored.

Postfix Increment Operator
A primary expression followed by a ++ operator is a postfix increment expression. The primary
expression must denote a variable of an arithmetic type. The compile-time type of the postfix
increment expression is the type of the variable. The value 1, converted to the type of the variable, is
added to the value of the variable and stored back into the variable. The value of the postfix
increment expression is the value of the variable before the new value is stored.

Prefix Decrement Operator
A primary expression preceded by a -- operator is a prefix decrement expression. The primary
expression must denote a variable of an arithmetic type. The cornpile-time type of the prefix
decrement expression is the type of the variable. The value 1, converted to the type of the variable,
is subtracted from the value of the variable and stored back into the variable. The value of the prefix
decrement expression is the value of the variable after the new value is stored.

Prefix Increment Operator
A primary expression preceded by a ++ operator is a prefix increment expression. The primary
expression must denote a variable of an arithmetic type. The compile-time type of the prefix
increment expression is the type of the variable. The value 1, converted to the type of the variable, is
added to the value of the variable and stored back into the variable. The value of the prefix incement
expression is the value of the variable after the new value is stored.

Array Types
Variables of array type can hold references to arrays

Remainder
The binary % operator is said to yield the remainder of its operands from an (implied) division; the
left-hand operand is the dividend and the right-hand operand is the divisor.

Integer remainder produces a result value such that (a/b) *b+ (a%b) is equal to a. Note that this
identity holds even in the special case that the dividend is the negative integer of largest possible
magnitude for its type and the divisor is -1 (the remainder is 0). It follows from this rule is that the
result of the remainder operation can be negative only if the dividend is negative, and can be positive
only if the dividend is positive; moreover, the magnitude of the result is always less than the
magnitude of the divisor. If the value of the divisor for an integer remainder operator is 0, then an
ArithmeticException is thrown.

The result of a floating-point remainder operation as computed by the % operator is not the same as
the so-called "remainder" operation defined by IEEE 754. (The IEEE 754 "remainder" operation
computes the remainder from a rounding division, not a truncating division, and so its behavior is not
analogous to that of the usual integer remainder operator. The Java language defines 0/0 on floating-
point operations to behave in a manner analogous to that of the Java integer remainder operator; this
may be compared with the C library function fmod. The IEEE 754 remainder operation may be
computed by the Java library routine Math. IEEEremainder.

The result of a Java floating-point remainder operation is governed by these rules:

· If either operand is NaN, the result is NaN.
· If neither operand is NaN, the sign of the result equals the sign of the dividend.
· If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
· If the dividend is finite and the divisor is an infinity, the result equals the dividend.
· If the dividend is a zero and the divisor is finite, the result equals the dividend
· In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-

point remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n -
(d. q) where q is an integer that is negative only if n/d is negative and positive only if n/d is
positive, and whose magnitude is as large as possible without exceeding the magnitude of the
true mathematical quotient of n and d.

Despite the fact that division by zero may occur, execution of a floating-point remainder operator %
never throws a run-time exception. Note that overflow, underflow, or loss of precision cannot occur.

Shift Operators
The shift operators include the left shift «, the signed right shift », and the unsigned right shift »>;
they are syntactically left-associative (they group left-to-right). The left-hand operand of a shift
operator is the value to be shifted; the right-hand operand specifies the shift distance.

ShiftExpression:
 AdditiveExpression
 Shift Expression « AdditiveExpression
 ShiftExpression » AdditiveExpression
 ShiftExpression »> AdditiveExpression

Each operand of a shift operator must be a value of primitive integral type. Binary arithmetic
promotion (§ Binary Arithmetic Promotion) is not performed on the operands; rather, unary arithmetic
promotion (§ Unary Arithmetic Promotion) is performed on each operand separately, and the
compile-time type of the shift expression is the promoted type of the left-hand operand.

If the promoted type of the left-hand operand is int, only the five lowest-order bits of the right-hand
operand are used as the shift distance. It is as if the right-hand operand were subjected to a bitwise
logical and operator & (§ Conditional-And Operator) with the mask value Ox1f. The shift distance
actually used is therefore always in the range 0 to 31, inclusive.

If the promoted type of the left-hand operand is long, only the six lowest-order bits of the right-hand
operand are used as the shift distance. It is as if the right-hand operand were subjected to a bitwise
logical and operator & (§ Conditional-And Operator) with the mask value 0x3 f. The shift distance
actually used is therefore always in the range 0 to 63, inclusive.

The value of n«s is n left-shifted s bit positions; this is equivalent (even if overflow occurs) to
multiplication by two to the power s).

The value of n»s is n right-shifted s bit positions with sign-extension. The resulting value is L n/2] (For
non-negative value of n, this is equivalent to truncating integer division, as computed by the integer
division operator /, by two to the power s.)

The value of n»>s is n right-shifted s bit positions with zero-extension. If n is positive, the result is the
same as that of n»s; if n is negative, the result is equal to that of the expression (n»s) + (2« (k-s-i)),
where k is 32 if the type of the left-hand operand is int and 64 if its type is long.

Simple Assignment Operator
The simple assignment operator converts the value of its right-hand operand to the type of the left-
hand variable and stores this converted value into the variable. It is a compile-time error if the right-
hand operand cannot be converted to the type of the variable by assignment conversion (§3.3).

String Concatenation Operator
If the value of either operand of + is a reference to an object of type String, then the + operator
behaves as if it converts the other operand to a reference to a String object (if it is not already a
reference to a String object), and returns a reference to an object of type String that is the
concatenation of the two operand strings.(The qualification "as if,' is present because an
implementation may choose to perform the conversion and concatenation in one step so as to avoid
allocating and then discarding an intermediate String object.)

A operand that is not a reference to a String is converted to a String according to the compile-time
type of the operand:

· If String, but the value is null, then the literal string "null" is the result.
· If a reference type other than String:
· If the value is null, then the literal string null is the result.
· Otherwise, the toString method of the object is invoked with no arguments; this method returns a

reference value of type String, which is used as the result of the conversion unless it is the null
value, in which case the literal string "null" is the result. (The class Object defines such a toString
method, sothis method is always available.)

· If a primitive integral type, the value is converted to a string representing the value in decimal
notation, preceded by a - sign if the value is negative. If the value is nonzero, the first digit is
nonzero; if the value is zero, a single digit 0 is produced.

· If a primitive floating-point type, has floating-point type then this value is converted.
· If type char, then the operand value is converted to a String of length one containing the operand

value as its single character.
· If type boolean, then the result is either the literal string "true" or the literal string "false".

this and super
The keywords this and super may be used only within the body of a non-static method. They have
the same value, which is a reference to the object for which the method was invoked; but they have
different compile-time types.

The compile-time type of this is the class (call it C) within which the method body appears. The
compile-time type of super is the immediate superclass of C, as indicated in the extends clause of
the definition of C. The keyword super may not appear within the class Object, which has no
superclass. The run-time type of the value, of course, maybe C or any subclass of C, unless the
class C is final (and therefore has no proper subclasses), in which case the run-time type is
necessarily C.

There are two situations, involving method invocation (§ Method Calls) and constructor invocation (§
The Body of a Constructor), in which the keyword super plays a special role. In all other situations,
the keyword super is entirely equivalent to a cast (§ Casts) of the keyword this to the type of the
immediate superclass.

Type Comparison Operator instanceof
The compile-time type of the left-hand operand of the instanceof operator must be a class or
interface type; otherwise a compile-time error occurs.

The second operand of the instanceof operator is not really an expression, but instead must specify
a reference type.

The instanceof operator returns false if the first operand denotes null. (The rationale is that while null
can be assigned to a variable of any reference type, it is not an object and therefore not an
"instance" of a type.)

The instanceof operator returns true if the run-time type of the first operand allows it to represent an
object of the second operand's type, and false otherwise. Equivalently, if the (run-time type of the)
first operand can be cast to the second type without raising a ClassCastException then instanceof is
true else false. The prototypical use of instanceof is:

if (thermostat instanceof MeasuringDevice)
 (MeasuringDevice dev = (MesursuringDevice) thermostat;
 ...
}

Here we may know that thermostat is a device (a superclass of MeasuringDevice), but may not know
if it is, more specifically, a MeasuringDevice. The instanceof operator protects us from the
ClassCastException which would result if the thermostat could not represent a MeasuringDevice, i.e.
could not be assigned to dev.

If there is no possibility that the instanceof can return true then a compile-time error results. This can
occur, for example, in:

class A extends Object;
class B extends Object;
A a;
 ...
if (a instanceof B) // impossible and illegal
 B b (B)a; // always an exception
}

Given

T t;
if (t instanceof U) {
 U u = (U) t;
 ...
}

with T and U distinct, then

· if U is a class type, then instanceof is checking that the run-time type of t is a subclass of U,
which can be true only when T is a superclass of U

· if U is an interface type, then instanceof is checking that U is implemented by the run-time type of
t or by a superclass of the run-time type of T. If this is known to be true and the check
unnecessary, then this is a compile-time error. Since any class can implement an interface this
can never be proven false until run-time.

Unary Minus Operator
The value of the operand of the unary - operator must be a primitive value of an arithmetic type. The
operand undergoes unary arithmetic promotion . The compile-time type of a unary plus expression is
the promoted type of the operand. The result is the arithmetic negation of the promoted value of the
operand.

For integer values, negation is the same as subtraction from zero. Because Java uses two's-
complement representation for integers, and the range of two's-complement values is not symmetric,
the negation of the maximum negative int or long results in that same maximum negative number.
Despite the fact that overflow has occurred, no exception is thrown. Note that, for all integer values x,
-xequals (-x) +1.

For floating-point values, negation is not the same as subtraction from zero, because if x is +0.0,
then 0. 0-xequals +0.0, but -xequals -0.0. Unary minus merely inverts the sign of a floating-point
number. Special cases of interest:

· If the operand is Nan, the result is NaN (recall that NaN has no Sign).
· If the operand is an infinity, the result is the infinity of opposite sign.
· If the operand is a zero, the result is the zero of opposite sign.

Unary Plus Operator
The value of the operand of the unary + operator must be a primitive value of an arithmetic type. The
operand undergoes unary arithmetic promotion. The compile-time type of a unary plus expression is
the promoted type of the operand. The result is the promoted value of the operand.

(§ Using this
0,<Using this super and Superclass Type Names>

